Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E2 in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica

Rodrigo Belmonte, Tiehui Wang, Gary J Duncan, Ida Skaar, Hugo Mélida, Vincent Bulone, Pieter van West, Christopher J Secombes

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglanding E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development.

Original languageEnglish
Pages (from-to)4518-4529
Number of pages12
JournalInfection and Immunity
Volume82
Issue number11
Early online date11 Aug 2014
DOIs
Publication statusPublished - Nov 2014

Fingerprint

Saprolegnia
Oomycetes
Dinoprostone
Cell Wall
Immunity
Carbohydrates
Fishes
Salmo salar
Prostaglandins
Leukocytes
Interleukin-11
Aquaculture
Cyclooxygenase Inhibitors
Antigen Presentation
Adaptive Immunity
Germination
Helper-Inducer T-Lymphocytes
Infection
Fresh Water
Cellular Immunity

Cite this

Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E2 in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica. / Belmonte, Rodrigo; Wang, Tiehui; Duncan, Gary J; Skaar, Ida; Mélida, Hugo; Bulone, Vincent; van West, Pieter; Secombes, Christopher J.

In: Infection and Immunity, Vol. 82, No. 11, 11.2014, p. 4518-4529.

Research output: Contribution to journalArticle

@article{01e05db6ddf54efbba7841f6c0d28166,
title = "Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E2 in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica",
abstract = "Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglanding E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development.",
author = "Rodrigo Belmonte and Tiehui Wang and Duncan, {Gary J} and Ida Skaar and Hugo M{\'e}lida and Vincent Bulone and {van West}, Pieter and Secombes, {Christopher J}",
note = "Copyright {\circledC} 2014, American Society for Microbiology. All Rights Reserved. ACKNOWLEDGEMENTS: This work was supported by the European Commission through Marie Curie actions (ITN-SAPRO-238550). We thank J. Dieguez-Uribeondo from the Royal Botanical Gardens (CSIC, Spain) for kindly providing the Saprolegnia diclina VS20 strain. We thank Alan Bowman from the University of Aberdeen for his input into the design of PGE2 purification and analysis.",
year = "2014",
month = "11",
doi = "10.1128/IAI.02196-14",
language = "English",
volume = "82",
pages = "4518--4529",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "11",

}

TY - JOUR

T1 - Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E2 in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica

AU - Belmonte, Rodrigo

AU - Wang, Tiehui

AU - Duncan, Gary J

AU - Skaar, Ida

AU - Mélida, Hugo

AU - Bulone, Vincent

AU - van West, Pieter

AU - Secombes, Christopher J

N1 - Copyright © 2014, American Society for Microbiology. All Rights Reserved. ACKNOWLEDGEMENTS: This work was supported by the European Commission through Marie Curie actions (ITN-SAPRO-238550). We thank J. Dieguez-Uribeondo from the Royal Botanical Gardens (CSIC, Spain) for kindly providing the Saprolegnia diclina VS20 strain. We thank Alan Bowman from the University of Aberdeen for his input into the design of PGE2 purification and analysis.

PY - 2014/11

Y1 - 2014/11

N2 - Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglanding E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development.

AB - Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglanding E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development.

U2 - 10.1128/IAI.02196-14

DO - 10.1128/IAI.02196-14

M3 - Article

VL - 82

SP - 4518

EP - 4529

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 11

ER -