Role of peptides in rumen microbial metabolism

review

R. J. Wallace, C. Atasoglu, C. J. Newbold

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine proteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in proteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on rapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.
Original languageEnglish
Pages (from-to)139-147
Number of pages9
JournalAsian-Australasian Journal of Animal Sciences
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Feb 1999

Fingerprint

Rumen
rumen
peptides
Peptides
metabolism
Amino Acids
peptidases
amino acids
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases
Prevotella
Peptide Hydrolases
Acetylation
Bacteria
acetylation
Proteolysis
proteolysis
Amino Acids, Peptides, and Proteins
bacteria
proteinases
Oligopeptides

Cite this

Role of peptides in rumen microbial metabolism : review. / Wallace, R. J.; Atasoglu, C.; Newbold, C. J.

In: Asian-Australasian Journal of Animal Sciences, Vol. 12, No. 1, 01.02.1999, p. 139-147.

Research output: Contribution to journalArticle

Wallace, R. J. ; Atasoglu, C. ; Newbold, C. J. / Role of peptides in rumen microbial metabolism : review. In: Asian-Australasian Journal of Animal Sciences. 1999 ; Vol. 12, No. 1. pp. 139-147.
@article{ae3a281306b4496985a3fa525f8be48f,
title = "Role of peptides in rumen microbial metabolism: review",
abstract = "Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine proteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in proteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on rapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90{\%} of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.",
author = "Wallace, {R. J.} and C. Atasoglu and Newbold, {C. J.}",
note = "Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.",
year = "1999",
month = "2",
day = "1",
doi = "10.5713/ajas.1999.139",
language = "English",
volume = "12",
pages = "139--147",
journal = "Asian-Australasian Journal of Animal Sciences",
issn = "1011-2367",
publisher = "Asian-Australasian Association of Animal Production Societies",
number = "1",

}

TY - JOUR

T1 - Role of peptides in rumen microbial metabolism

T2 - review

AU - Wallace, R. J.

AU - Atasoglu, C.

AU - Newbold, C. J.

N1 - Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.

PY - 1999/2/1

Y1 - 1999/2/1

N2 - Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine proteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in proteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on rapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.

AB - Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine proteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in proteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on rapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.

UR - http://www.scopus.com/inward/record.url?scp=0033484722&partnerID=8YFLogxK

U2 - 10.5713/ajas.1999.139

DO - 10.5713/ajas.1999.139

M3 - Article

VL - 12

SP - 139

EP - 147

JO - Asian-Australasian Journal of Animal Sciences

JF - Asian-Australasian Journal of Animal Sciences

SN - 1011-2367

IS - 1

ER -