Abstract
The organisation of chromatin is closely intertwined with biological activities of
chromosome domains, including transcription and DNA replication status. Scaffold attachment factor A (SAF-A), also known as Heteronuclear Ribonucleoprotein Protein U (HNRNPU), contributes to the formation of open chromatin structure. Here we demonstrate that SAF-A promotes the normal progression of DNA replication, and enables resumption of replication after inhibition. We report that cells depleted for SAF-A show reduced origin licensing in G1 phase, and consequently reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted for SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated g-H2AX formation and tend to enter quiescence. Overall we find that SAF-A
protein promotes robust DNA replication to ensure continuing cell proliferation.
chromosome domains, including transcription and DNA replication status. Scaffold attachment factor A (SAF-A), also known as Heteronuclear Ribonucleoprotein Protein U (HNRNPU), contributes to the formation of open chromatin structure. Here we demonstrate that SAF-A promotes the normal progression of DNA replication, and enables resumption of replication after inhibition. We report that cells depleted for SAF-A show reduced origin licensing in G1 phase, and consequently reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted for SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated g-H2AX formation and tend to enter quiescence. Overall we find that SAF-A
protein promotes robust DNA replication to ensure continuing cell proliferation.
Original language | English |
---|---|
Article number | jcs.258991 |
Number of pages | 15 |
Journal | Journal of Cell Science |
Volume | 135 |
Issue number | 2 |
Early online date | 10 Dec 2021 |
DOIs | |
Publication status | Published - 24 Jan 2022 |
Keywords
- DNA replication
- Chromatin
- Replication stress
Fingerprint
Dive into the research topics of 'SAF-A promotes origin licensing and replication fork progression to ensure robust DNA replication'. Together they form a unique fingerprint.Equipment
-
Iain Fraser Cytometry Centre
Andrea Holme (Manager), Linda Duncan (Senior Application Scientist), Ailsa Laird (Technician) & Kate Burgoyne (Technician)
Institute of Medical SciencesResearch Facilities: Facility
-
Microscopy and Histology
Debbie Wilkinson (Manager) & Gillian Milne (Manager)
Medical SciencesResearch Facilities: Facility