Scalable reasoning with tractable fuzzy ontology languages

Giorgos Stoilos, Jeff Z. Pan, Giorgos Stamou

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like description logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle the scale of data that the Web provides. For those reasons much research effort has been focused on providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.

Original languageEnglish
Title of host publicationScalable Fuzzy Algorithms for Data Management and Analysis
Subtitle of host publicationMethods and Design
EditorsAnne Laurent, Marie-Jeanne Lesot
Publisher IGI Global
Pages130-158
Number of pages29
ISBN (Electronic)9781605668598
ISBN (Print)9781605668581, 1605668583, 9781616924478
DOIs
Publication statusPublished - 1 Dec 2009

Fingerprint

logic
ontology
language
benchmarking
ranking
semantics
uncertainty

ASJC Scopus subject areas

  • Social Sciences(all)

Cite this

Stoilos, G., Pan, J. Z., & Stamou, G. (2009). Scalable reasoning with tractable fuzzy ontology languages. In A. Laurent, & M-J. Lesot (Eds.), Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design (pp. 130-158). IGI Global. https://doi.org/10.4018/978-1-60566-858-1.ch005

Scalable reasoning with tractable fuzzy ontology languages. / Stoilos, Giorgos; Pan, Jeff Z.; Stamou, Giorgos.

Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design. ed. / Anne Laurent; Marie-Jeanne Lesot. IGI Global, 2009. p. 130-158.

Research output: Chapter in Book/Report/Conference proceedingChapter

Stoilos, G, Pan, JZ & Stamou, G 2009, Scalable reasoning with tractable fuzzy ontology languages. in A Laurent & M-J Lesot (eds), Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design. IGI Global, pp. 130-158. https://doi.org/10.4018/978-1-60566-858-1.ch005
Stoilos G, Pan JZ, Stamou G. Scalable reasoning with tractable fuzzy ontology languages. In Laurent A, Lesot M-J, editors, Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design. IGI Global. 2009. p. 130-158 https://doi.org/10.4018/978-1-60566-858-1.ch005
Stoilos, Giorgos ; Pan, Jeff Z. ; Stamou, Giorgos. / Scalable reasoning with tractable fuzzy ontology languages. Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design. editor / Anne Laurent ; Marie-Jeanne Lesot. IGI Global, 2009. pp. 130-158
@inbook{ddbbbdffeb1e4b169ab796d996bb9b83,
title = "Scalable reasoning with tractable fuzzy ontology languages",
abstract = "The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like description logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle the scale of data that the Web provides. For those reasons much research effort has been focused on providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.",
author = "Giorgos Stoilos and Pan, {Jeff Z.} and Giorgos Stamou",
year = "2009",
month = "12",
day = "1",
doi = "10.4018/978-1-60566-858-1.ch005",
language = "English",
isbn = "9781605668581",
pages = "130--158",
editor = "Anne Laurent and Marie-Jeanne Lesot",
booktitle = "Scalable Fuzzy Algorithms for Data Management and Analysis",
publisher = "IGI Global",

}

TY - CHAP

T1 - Scalable reasoning with tractable fuzzy ontology languages

AU - Stoilos, Giorgos

AU - Pan, Jeff Z.

AU - Stamou, Giorgos

PY - 2009/12/1

Y1 - 2009/12/1

N2 - The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like description logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle the scale of data that the Web provides. For those reasons much research effort has been focused on providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.

AB - The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like description logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle the scale of data that the Web provides. For those reasons much research effort has been focused on providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.

UR - http://www.scopus.com/inward/record.url?scp=84900639124&partnerID=8YFLogxK

U2 - 10.4018/978-1-60566-858-1.ch005

DO - 10.4018/978-1-60566-858-1.ch005

M3 - Chapter

SN - 9781605668581

SN - 1605668583

SN - 9781616924478

SP - 130

EP - 158

BT - Scalable Fuzzy Algorithms for Data Management and Analysis

A2 - Laurent, Anne

A2 - Lesot, Marie-Jeanne

PB - IGI Global

ER -