Scaling behaviour for recurrence-based measures at the edge of chaos

Ozgur Afsar, Deniz Eroglu, Norbert Marwan, Jurgen Kurths

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract


The study of phase transitions with critical exponents has helped to understand fundamental physical mechanisms. Dynamical systems which go to chaos via period doublings show an equivalent behavior during transitions between different dynamical regimes that can be expressed by critical exponents, known as the Huberman-Rudnick scaling law. This universal law is well studied, e.g., with respect to the Lyapunov exponents. Recurrence plots and related recurrence quantification analysis are popular tools to investigate the regime transitions in dynamical systems. However, the measures are mostly heuristically defined and lack clear theoretical justification. In this letter we link a selection of these heuristical measures with theory by numerically studying their scaling behavior when approaching a phase transition point. We find a promising similarity between the critical exponents to those of the Huberman-Rudnick scaling law, suggesting that the considered measures are able to indicate dynamical phase transition even from the theoretical point of view.
Original languageEnglish
Article number10005
Number of pages7
JournalEurophysics Letters
Volume112
Issue number1
DOIs
Publication statusPublished - 19 Oct 2015

Fingerprint

chaos
exponents
scaling
scaling laws
dynamical systems
period doubling
transition points
plots

Cite this

Scaling behaviour for recurrence-based measures at the edge of chaos. / Afsar, Ozgur; Eroglu, Deniz; Marwan, Norbert; Kurths, Jurgen.

In: Europhysics Letters, Vol. 112, No. 1, 10005, 19.10.2015.

Research output: Contribution to journalArticle

Afsar, Ozgur ; Eroglu, Deniz ; Marwan, Norbert ; Kurths, Jurgen. / Scaling behaviour for recurrence-based measures at the edge of chaos. In: Europhysics Letters. 2015 ; Vol. 112, No. 1.
@article{87c66086516d4550823776c6e9b6ba41,
title = "Scaling behaviour for recurrence-based measures at the edge of chaos",
abstract = "The study of phase transitions with critical exponents has helped to understand fundamental physical mechanisms. Dynamical systems which go to chaos via period doublings show an equivalent behavior during transitions between different dynamical regimes that can be expressed by critical exponents, known as the Huberman-Rudnick scaling law. This universal law is well studied, e.g., with respect to the Lyapunov exponents. Recurrence plots and related recurrence quantification analysis are popular tools to investigate the regime transitions in dynamical systems. However, the measures are mostly heuristically defined and lack clear theoretical justification. In this letter we link a selection of these heuristical measures with theory by numerically studying their scaling behavior when approaching a phase transition point. We find a promising similarity between the critical exponents to those of the Huberman-Rudnick scaling law, suggesting that the considered measures are able to indicate dynamical phase transition even from the theoretical point of view.",
author = "Ozgur Afsar and Deniz Eroglu and Norbert Marwan and Jurgen Kurths",
note = "OA acknowledges support by TUBITAK (Turkish Agency) under the 2219 Program. DE and NM would like to acknowledge support by the Leibniz Association (WGL) under Grant No. SAW-2013-IZW-2. NM acknowledges support by DFG Research Training Group GRK 2043/1.",
year = "2015",
month = "10",
day = "19",
doi = "10.1209/0295-5075/112/10005",
language = "English",
volume = "112",
journal = "Europhysics Letters",
issn = "0295-5075",
publisher = "EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY",
number = "1",

}

TY - JOUR

T1 - Scaling behaviour for recurrence-based measures at the edge of chaos

AU - Afsar, Ozgur

AU - Eroglu, Deniz

AU - Marwan, Norbert

AU - Kurths, Jurgen

N1 - OA acknowledges support by TUBITAK (Turkish Agency) under the 2219 Program. DE and NM would like to acknowledge support by the Leibniz Association (WGL) under Grant No. SAW-2013-IZW-2. NM acknowledges support by DFG Research Training Group GRK 2043/1.

PY - 2015/10/19

Y1 - 2015/10/19

N2 - The study of phase transitions with critical exponents has helped to understand fundamental physical mechanisms. Dynamical systems which go to chaos via period doublings show an equivalent behavior during transitions between different dynamical regimes that can be expressed by critical exponents, known as the Huberman-Rudnick scaling law. This universal law is well studied, e.g., with respect to the Lyapunov exponents. Recurrence plots and related recurrence quantification analysis are popular tools to investigate the regime transitions in dynamical systems. However, the measures are mostly heuristically defined and lack clear theoretical justification. In this letter we link a selection of these heuristical measures with theory by numerically studying their scaling behavior when approaching a phase transition point. We find a promising similarity between the critical exponents to those of the Huberman-Rudnick scaling law, suggesting that the considered measures are able to indicate dynamical phase transition even from the theoretical point of view.

AB - The study of phase transitions with critical exponents has helped to understand fundamental physical mechanisms. Dynamical systems which go to chaos via period doublings show an equivalent behavior during transitions between different dynamical regimes that can be expressed by critical exponents, known as the Huberman-Rudnick scaling law. This universal law is well studied, e.g., with respect to the Lyapunov exponents. Recurrence plots and related recurrence quantification analysis are popular tools to investigate the regime transitions in dynamical systems. However, the measures are mostly heuristically defined and lack clear theoretical justification. In this letter we link a selection of these heuristical measures with theory by numerically studying their scaling behavior when approaching a phase transition point. We find a promising similarity between the critical exponents to those of the Huberman-Rudnick scaling law, suggesting that the considered measures are able to indicate dynamical phase transition even from the theoretical point of view.

U2 - 10.1209/0295-5075/112/10005

DO - 10.1209/0295-5075/112/10005

M3 - Article

VL - 112

JO - Europhysics Letters

JF - Europhysics Letters

SN - 0295-5075

IS - 1

M1 - 10005

ER -