TY - JOUR
T1 - Seismostratigraphy of the Ceará Plateau
T2 - Clues to Decipher the Cenozoic Evolution of Brazilian Equatorial Margin
AU - Jovane, Luigi
AU - Picanco Figueiredo, Jorge
AU - Pavani Alves, Daniel
AU - Iacopini, David
AU - Giorgioni, Martino
AU - Vannucchi, Paola
AU - Silva de Moura, Denise
AU - Hilario Bezerra, Francisco
AU - Vital, Helenic
AU - Rios, Isabella
AU - C.Molina, Eder
N1 - This research is part of the projects of LJ: Ciencia do Mar II—CAPES, Paleoceanografia da Margem Equatorial Brasileira and of HV: IODP-CAPES—Geohazards e Tectônica—A influência de zonas de fratura na reativação de margens passivas: Margem Equatorial Brasileira. MG and LJ acknowledges the support of the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP process n. 2012/15995-5 and 2011/22018-3, respectively).
PY - 2016/10/25
Y1 - 2016/10/25
N2 - The Ceará Plateau offshore Fortaleza holds some particular characteristics when compared to the other seamounts of the Brazilian Equatorial Margin (BEM). Not only it is the largest and the closest to the continent, it is also located at the boundary between the continental and the oceanic crusts, while all the others seamounts along the BEM are located on oceanic crust. For this reasons, the Ceará Plateau represents a key area to study the stratigraphy of the region throughout proximal to deep ocean facies in relation to sea-level and oceanographic variations. Seismic interpretation is performed providing important stratigraphic features of the sedimentary pattern of the Ceará and Potiguar basins. Moreover, seismic imaging of the Ceará Plateau shows a “disorganized” interior, probably of volcanic origin, overlain by a series of horizontal seismic reflectors that can be interpreted as pelagic/hemipelagic sediments. As large uncertainties exist about the age of the initial formation of this seamount, three scenarios must be considered. If the age of the volcanic edifice is Coniacian (1), then the overlying pelagic/hemipelagic sedimentary succession can include an almost continuous record of the last ~90 Ma at the Equatorial Atlantic Ocean. In the case that the volcanic edifice is Eocene in age (2), the sedimentary sequence would still encompass the upper Paleogene and all the Neogene. There is also the possibility that the volcanic edifice was built during multiple magmatic events (3). In this case, it is likely that the sediments are interfingered with volcanic rocks at the edge of the structure. Although the age estimation (between Coniacian and Eocene) has an uncertainty of more than 40 Myr, the current interpretation is that it developed initially as a volcanic edifice, formed by a series of magmatic events that occurred between the Santonian and the Eocene. Since then, the topography has been leveled by pelagic/hemipelagic sedimentation. Whichever was the initial age, a continuous and constant sequence of sediments deposited onto the Ceará Plateau, at the same latitude, and thus under the same oceanographic conditions, for the last several tens of million years. This would candidate the Ceará Plateau as a suitable opportunity to record a long-term history of the Atlantic Equatorial Margin.
AB - The Ceará Plateau offshore Fortaleza holds some particular characteristics when compared to the other seamounts of the Brazilian Equatorial Margin (BEM). Not only it is the largest and the closest to the continent, it is also located at the boundary between the continental and the oceanic crusts, while all the others seamounts along the BEM are located on oceanic crust. For this reasons, the Ceará Plateau represents a key area to study the stratigraphy of the region throughout proximal to deep ocean facies in relation to sea-level and oceanographic variations. Seismic interpretation is performed providing important stratigraphic features of the sedimentary pattern of the Ceará and Potiguar basins. Moreover, seismic imaging of the Ceará Plateau shows a “disorganized” interior, probably of volcanic origin, overlain by a series of horizontal seismic reflectors that can be interpreted as pelagic/hemipelagic sediments. As large uncertainties exist about the age of the initial formation of this seamount, three scenarios must be considered. If the age of the volcanic edifice is Coniacian (1), then the overlying pelagic/hemipelagic sedimentary succession can include an almost continuous record of the last ~90 Ma at the Equatorial Atlantic Ocean. In the case that the volcanic edifice is Eocene in age (2), the sedimentary sequence would still encompass the upper Paleogene and all the Neogene. There is also the possibility that the volcanic edifice was built during multiple magmatic events (3). In this case, it is likely that the sediments are interfingered with volcanic rocks at the edge of the structure. Although the age estimation (between Coniacian and Eocene) has an uncertainty of more than 40 Myr, the current interpretation is that it developed initially as a volcanic edifice, formed by a series of magmatic events that occurred between the Santonian and the Eocene. Since then, the topography has been leveled by pelagic/hemipelagic sedimentation. Whichever was the initial age, a continuous and constant sequence of sediments deposited onto the Ceará Plateau, at the same latitude, and thus under the same oceanographic conditions, for the last several tens of million years. This would candidate the Ceará Plateau as a suitable opportunity to record a long-term history of the Atlantic Equatorial Margin.
KW - ceará plateau
KW - potiguar basin
KW - brazilian equatorial margin
KW - cenozoic
KW - seismostratigraphy
U2 - 10.3389/feart.2016.00090
DO - 10.3389/feart.2016.00090
M3 - Article
VL - 4
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
SN - 2296-6463
M1 - 90
ER -