Selectivity-based spreading dynamics on complex networks

Rui Yang, Liang Huang, Ying-Cheng Lai

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Most previous studies on spreading dynamics on complex networks are based on the assumption that a node can transmit infection to any of its neighbors with equal probability. In realistic situations, an infected node can preferentially select a targeted node and vice versa. We develop a first-order correction to the standard meanfield theory to address this type of more realistic spreading dynamics on complex networks. Our analysis reveals that, when small-degree nodes are selected more frequently as targets, infection can spread to a larger part of the network. However, when a small set of hub nodes dominates the dynamics, spreading can be severely suppressed. Our analysis yields more accurate predictions for the spreading dynamics than those from the standard mean-field approach.

Original languageEnglish
Article number026111
Number of pages5
JournalPhysical Review. E, Statistical, Nonlinear and Soft Matter Physics
Volume78
Issue number2
DOIs
Publication statusPublished - Aug 2008

Cite this