Self-Sustained Irregular Activity in an Ensemble of Neural Oscillators

Research output: Contribution to journalArticle

14 Citations (Scopus)
20 Downloads (Pure)

Abstract

An ensemble of pulse-coupled phase oscillators is thoroughly analyzed in the presence of a mean-field coupling and a dispersion of their natural frequencies. In spite of the analogies with the Kuramoto setup, a much richer scenario is observed. The “synchronized” phase, which emerges upon increasing the coupling strength, is characterized by highly irregular fluctuations: A time-series analysis reveals that the dynamics of the order parameter is indeed high dimensional. The complex dynamics appears to be the result of the nonperturbative action of a suitably shaped phase-response curve. Such a mechanism differs from the often-invoked balance between excitation and inhibition and might provide an alternative basis to account for the self-sustained brain activity in the resting state. The potential interest of this dynamical regime is further strengthened by its (microscopic) linear stability, which makes it quite suited for computational tasks. The overall study has been performed by combining analytical and numerical studies, starting from the linear stability analysis of the asynchronous regime, to include the Fourier analysis of the Kuramoto order parameter, the computation of various types of Lyapunov exponents, and a microscopic study of the interspike intervals.
Original languageEnglish
Article number011015
Pages (from-to)1-13
Number of pages13
JournalPhysical Review X
Volume6
DOIs
Publication statusPublished - 19 Feb 2016

Fingerprint

Irregular
Ensemble
oscillators
phase response
Order Parameter
time series analysis
Fourier analysis
brain
resonant frequencies
Linear Stability Analysis
Fourier Analysis
Time Series Analysis
exponents
Linear Stability
Complex Dynamics
intervals
Natural Frequency
Lyapunov Exponent
Mean Field
Analogy

Keywords

  • Complex Systems
  • Nonlinear Dynamics
  • Statistical Physics

Cite this

Self-Sustained Irregular Activity in an Ensemble of Neural Oscillators. / Ullner, Ekkehard; Politi, Antonio.

In: Physical Review X, Vol. 6, 011015, 19.02.2016, p. 1-13.

Research output: Contribution to journalArticle

@article{f818edba0aa84209a7b45e2b6b18b264,
title = "Self-Sustained Irregular Activity in an Ensemble of Neural Oscillators",
abstract = "An ensemble of pulse-coupled phase oscillators is thoroughly analyzed in the presence of a mean-field coupling and a dispersion of their natural frequencies. In spite of the analogies with the Kuramoto setup, a much richer scenario is observed. The “synchronized” phase, which emerges upon increasing the coupling strength, is characterized by highly irregular fluctuations: A time-series analysis reveals that the dynamics of the order parameter is indeed high dimensional. The complex dynamics appears to be the result of the nonperturbative action of a suitably shaped phase-response curve. Such a mechanism differs from the often-invoked balance between excitation and inhibition and might provide an alternative basis to account for the self-sustained brain activity in the resting state. The potential interest of this dynamical regime is further strengthened by its (microscopic) linear stability, which makes it quite suited for computational tasks. The overall study has been performed by combining analytical and numerical studies, starting from the linear stability analysis of the asynchronous regime, to include the Fourier analysis of the Kuramoto order parameter, the computation of various types of Lyapunov exponents, and a microscopic study of the interspike intervals.",
keywords = "Complex Systems, Nonlinear Dynamics, Statistical Physics",
author = "Ekkehard Ullner and Antonio Politi",
note = "ACKNOWLEDGMENT A.P. wishes to acknowledge a discussion with M. Wolfrum on the stability of the Kuramoto model. This work is partially supported by the ITN-EJD COSMOS (No. 642563) project.",
year = "2016",
month = "2",
day = "19",
doi = "10.1103/PhysRevX.6.011015",
language = "English",
volume = "6",
pages = "1--13",
journal = "Physical Review X",
issn = "2160-3308",
publisher = "AMER PHYSICAL SOC",

}

TY - JOUR

T1 - Self-Sustained Irregular Activity in an Ensemble of Neural Oscillators

AU - Ullner, Ekkehard

AU - Politi, Antonio

N1 - ACKNOWLEDGMENT A.P. wishes to acknowledge a discussion with M. Wolfrum on the stability of the Kuramoto model. This work is partially supported by the ITN-EJD COSMOS (No. 642563) project.

PY - 2016/2/19

Y1 - 2016/2/19

N2 - An ensemble of pulse-coupled phase oscillators is thoroughly analyzed in the presence of a mean-field coupling and a dispersion of their natural frequencies. In spite of the analogies with the Kuramoto setup, a much richer scenario is observed. The “synchronized” phase, which emerges upon increasing the coupling strength, is characterized by highly irregular fluctuations: A time-series analysis reveals that the dynamics of the order parameter is indeed high dimensional. The complex dynamics appears to be the result of the nonperturbative action of a suitably shaped phase-response curve. Such a mechanism differs from the often-invoked balance between excitation and inhibition and might provide an alternative basis to account for the self-sustained brain activity in the resting state. The potential interest of this dynamical regime is further strengthened by its (microscopic) linear stability, which makes it quite suited for computational tasks. The overall study has been performed by combining analytical and numerical studies, starting from the linear stability analysis of the asynchronous regime, to include the Fourier analysis of the Kuramoto order parameter, the computation of various types of Lyapunov exponents, and a microscopic study of the interspike intervals.

AB - An ensemble of pulse-coupled phase oscillators is thoroughly analyzed in the presence of a mean-field coupling and a dispersion of their natural frequencies. In spite of the analogies with the Kuramoto setup, a much richer scenario is observed. The “synchronized” phase, which emerges upon increasing the coupling strength, is characterized by highly irregular fluctuations: A time-series analysis reveals that the dynamics of the order parameter is indeed high dimensional. The complex dynamics appears to be the result of the nonperturbative action of a suitably shaped phase-response curve. Such a mechanism differs from the often-invoked balance between excitation and inhibition and might provide an alternative basis to account for the self-sustained brain activity in the resting state. The potential interest of this dynamical regime is further strengthened by its (microscopic) linear stability, which makes it quite suited for computational tasks. The overall study has been performed by combining analytical and numerical studies, starting from the linear stability analysis of the asynchronous regime, to include the Fourier analysis of the Kuramoto order parameter, the computation of various types of Lyapunov exponents, and a microscopic study of the interspike intervals.

KW - Complex Systems

KW - Nonlinear Dynamics

KW - Statistical Physics

U2 - 10.1103/PhysRevX.6.011015

DO - 10.1103/PhysRevX.6.011015

M3 - Article

VL - 6

SP - 1

EP - 13

JO - Physical Review X

JF - Physical Review X

SN - 2160-3308

M1 - 011015

ER -