Separating invariants for arbitrary linear actions of the additive group

Emilie Dufresne, Jonathan Elmer, Müfit Sezer*

*Corresponding author for this work

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

Original languageEnglish
Pages (from-to)207-219
Number of pages13
JournalManuscripta Mathematica
Volume143
Issue number1-2
Early online date21 May 2013
DOIs
Publication statusPublished - Jan 2014

Fingerprint

Finite Set
Ring
Invariant
Zero
Arbitrary

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Separating invariants for arbitrary linear actions of the additive group. / Dufresne, Emilie; Elmer, Jonathan; Sezer, Müfit.

In: Manuscripta Mathematica, Vol. 143, No. 1-2, 01.2014, p. 207-219.

Research output: Contribution to journalArticle

Dufresne, Emilie ; Elmer, Jonathan ; Sezer, Müfit. / Separating invariants for arbitrary linear actions of the additive group. In: Manuscripta Mathematica. 2014 ; Vol. 143, No. 1-2. pp. 207-219.
@article{c1b5426656d147878408794414762230,
title = "Separating invariants for arbitrary linear actions of the additive group",
abstract = "We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.",
author = "Emilie Dufresne and Jonathan Elmer and M{\"u}fit Sezer",
year = "2014",
month = "1",
doi = "10.1007/s00229-013-0625-y",
language = "English",
volume = "143",
pages = "207--219",
journal = "Manuscripta Mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1-2",

}

TY - JOUR

T1 - Separating invariants for arbitrary linear actions of the additive group

AU - Dufresne, Emilie

AU - Elmer, Jonathan

AU - Sezer, Müfit

PY - 2014/1

Y1 - 2014/1

N2 - We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

AB - We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

UR - http://www.scopus.com/inward/record.url?scp=84891553934&partnerID=8YFLogxK

U2 - 10.1007/s00229-013-0625-y

DO - 10.1007/s00229-013-0625-y

M3 - Article

VL - 143

SP - 207

EP - 219

JO - Manuscripta Mathematica

JF - Manuscripta Mathematica

SN - 0025-2611

IS - 1-2

ER -