Abstract
We use recent work on spectral synthesis in multiplier algebras to give an intrinsic characterization of the separable C*algebras A for which Orc(M(A)) = 1, i.e., for which the relation of inseparability on the topological space of primitive ideals of the multiplier algebra M(A) is an equivalence relation. This characterization has applications to the calculation of norms of inner derivations and other elementary operators on A and M(A). For example, we give necessary and sufficient conditions on the ideal structure of a separable C*algebra A for the norm of every inner derivation to be twice the distance of the implementing element to the centre of M(A).
Original language  English 

Pages (fromto)  389418 
Number of pages  30 
Journal  Israel Journal of Mathematics 
Volume  200 
Issue number  1 
Early online date  7 Feb 2014 
DOIs  
Publication status  Published  Jun 2014 
Fingerprint Dive into the research topics of 'Separation properties in the primitive ideal space of a multiplier algebra'. Together they form a unique fingerprint.
Profiles

Robert Archbold
 School of Natural & Computing Sciences, Mathematical Science  Emeritus Professor
Person: Honorary