TY - JOUR
T1 - Shallow mixing layers over hydraulically smooth bottom in a tilted open channel
AU - Proust, Sébastien
AU - Berni, Céline
AU - Nikora, Vladimir I.
N1 - Open Access via the CUP Agreement
Funding Information:
V.N. has been partly supported by EPSRC/UK grant ‘Secondary currents in turbulent flows over rough walls’ (EP/V002414/1).
PY - 2022/11/25
Y1 - 2022/11/25
N2 - Shallow mixing layers (SMLs) behind a splitter plate were studied in a tilted rectangular open-channel flume for a range of flow depths and the initial shear parameter λ = (U2 - U1)/(U2 + U1), where U1 and U2 are streamwise velocities of the slow and fast streams, respectively. The main focus of the study is on (i) key parameters controlling the time-averaged SMLs; and (ii) the emergence and spatial development of Kelvin-Helmholtz coherent structures (KHCSs) and large- and very-large-scale motions (LSMs and VLSMs) and associated turbulence statistics. The time-averaged flow features of the SMLs are mostly controlled by bed-friction length scale h/cf and shear parameter λ as well as by time-averaged spanwise velocities V and momentum fluxes UV, where h and cf are flow depth and bed-friction coefficient, respectively. For all studied cases, the effect of shear layer turbulence on the SML growth is comparatively weak, as the fluxes UV dominate over the spanwise turbulent fluxes. Initially, the emergence of KHCSs and their length scales largely depend on λ. The KHCSs cannot form if λ (Equation presented) 0.3 and the turbulence behind the splitter plate resembles that of free mixing layers. Further downstream, shear layer turbulence becomes dependent on the bed-friction number S = cfδv/(4hλ), where δv is vorticity thickness. When S (Equation presented) 0.01, the KHCSs are longitudinally stretched and the scaled transverse turbulent fluxes decrease with increasing S. The presence and streamwise development of LSMs/VLSMs away from the splitter plate depends on the λ-value, particularly when λ > 0.3, resembling LSMs/VLSMs in conventional open-channel flows when λ is small.
AB - Shallow mixing layers (SMLs) behind a splitter plate were studied in a tilted rectangular open-channel flume for a range of flow depths and the initial shear parameter λ = (U2 - U1)/(U2 + U1), where U1 and U2 are streamwise velocities of the slow and fast streams, respectively. The main focus of the study is on (i) key parameters controlling the time-averaged SMLs; and (ii) the emergence and spatial development of Kelvin-Helmholtz coherent structures (KHCSs) and large- and very-large-scale motions (LSMs and VLSMs) and associated turbulence statistics. The time-averaged flow features of the SMLs are mostly controlled by bed-friction length scale h/cf and shear parameter λ as well as by time-averaged spanwise velocities V and momentum fluxes UV, where h and cf are flow depth and bed-friction coefficient, respectively. For all studied cases, the effect of shear layer turbulence on the SML growth is comparatively weak, as the fluxes UV dominate over the spanwise turbulent fluxes. Initially, the emergence of KHCSs and their length scales largely depend on λ. The KHCSs cannot form if λ (Equation presented) 0.3 and the turbulence behind the splitter plate resembles that of free mixing layers. Further downstream, shear layer turbulence becomes dependent on the bed-friction number S = cfδv/(4hλ), where δv is vorticity thickness. When S (Equation presented) 0.01, the KHCSs are longitudinally stretched and the scaled transverse turbulent fluxes decrease with increasing S. The presence and streamwise development of LSMs/VLSMs away from the splitter plate depends on the λ-value, particularly when λ > 0.3, resembling LSMs/VLSMs in conventional open-channel flows when λ is small.
KW - river dynamics
KW - shallow water flows
KW - shear layer turbulence
UR - http://www.scopus.com/inward/record.url?scp=85141919255&partnerID=8YFLogxK
U2 - 10.1017/jfm.2022.818
DO - 10.1017/jfm.2022.818
M3 - Article
AN - SCOPUS:85141919255
VL - 951
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
M1 - A17
ER -