Similarity estimators for irregular and age-uncertain time series

K. Rehfeld*, J. Kurths

*Corresponding author for this work

Research output: Contribution to journalArticle

29 Citations (Scopus)
5 Downloads (Pure)

Abstract

Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear.

In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series.

In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity contributes less, particularly for the adapted Gaussian-kernel-based estimators and the event synchronization function. The introduced link strength concept summarizes the hypothesis test results and balances the individual strengths of the estimators: while gXCF is particularly suitable for short and irregular time series, gMI and the ESF can identify nonlinear dependencies. ESF could, in particular, be suitable to study extreme event dynamics in paleoclimate records. Programs to analyze paleoclimatic time series for significant dependencies are included in a freely available software toolbox.

Original languageEnglish
Pages (from-to)107-122
Number of pages16
JournalClimate of the Past
Volume10
Issue number1
DOIs
Publication statusPublished - 2014

Keywords

  • mutual information
  • spectral-analysis
  • recurrence plots
  • sampled-data
  • monsoon
  • climate
  • networks
  • models
  • speleothem
  • dynamics

Cite this

Similarity estimators for irregular and age-uncertain time series. / Rehfeld, K.; Kurths, J.

In: Climate of the Past, Vol. 10, No. 1, 2014, p. 107-122.

Research output: Contribution to journalArticle

Rehfeld, K. ; Kurths, J. / Similarity estimators for irregular and age-uncertain time series. In: Climate of the Past. 2014 ; Vol. 10, No. 1. pp. 107-122.
@article{a1f40352a10e4195bc4ca3d9e3a5939b,
title = "Similarity estimators for irregular and age-uncertain time series",
abstract = "Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear.In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series.In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55{\%} (in the linear case) to 53-42{\%} (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5{\%} of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity contributes less, particularly for the adapted Gaussian-kernel-based estimators and the event synchronization function. The introduced link strength concept summarizes the hypothesis test results and balances the individual strengths of the estimators: while gXCF is particularly suitable for short and irregular time series, gMI and the ESF can identify nonlinear dependencies. ESF could, in particular, be suitable to study extreme event dynamics in paleoclimate records. Programs to analyze paleoclimatic time series for significant dependencies are included in a freely available software toolbox.",
keywords = "mutual information, spectral-analysis, recurrence plots, sampled-data, monsoon, climate, networks, models, speleothem, dynamics",
author = "K. Rehfeld and J. Kurths",
year = "2014",
doi = "10.5194/cp-10-107-2014",
language = "English",
volume = "10",
pages = "107--122",
journal = "Climate of the Past",
issn = "1814-9324",
publisher = "European Geosciences Union",
number = "1",

}

TY - JOUR

T1 - Similarity estimators for irregular and age-uncertain time series

AU - Rehfeld, K.

AU - Kurths, J.

PY - 2014

Y1 - 2014

N2 - Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear.In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series.In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity contributes less, particularly for the adapted Gaussian-kernel-based estimators and the event synchronization function. The introduced link strength concept summarizes the hypothesis test results and balances the individual strengths of the estimators: while gXCF is particularly suitable for short and irregular time series, gMI and the ESF can identify nonlinear dependencies. ESF could, in particular, be suitable to study extreme event dynamics in paleoclimate records. Programs to analyze paleoclimatic time series for significant dependencies are included in a freely available software toolbox.

AB - Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear.In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series.In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity contributes less, particularly for the adapted Gaussian-kernel-based estimators and the event synchronization function. The introduced link strength concept summarizes the hypothesis test results and balances the individual strengths of the estimators: while gXCF is particularly suitable for short and irregular time series, gMI and the ESF can identify nonlinear dependencies. ESF could, in particular, be suitable to study extreme event dynamics in paleoclimate records. Programs to analyze paleoclimatic time series for significant dependencies are included in a freely available software toolbox.

KW - mutual information

KW - spectral-analysis

KW - recurrence plots

KW - sampled-data

KW - monsoon

KW - climate

KW - networks

KW - models

KW - speleothem

KW - dynamics

U2 - 10.5194/cp-10-107-2014

DO - 10.5194/cp-10-107-2014

M3 - Article

VL - 10

SP - 107

EP - 122

JO - Climate of the Past

JF - Climate of the Past

SN - 1814-9324

IS - 1

ER -