Spatial learning and flexibility in 129S2/SvHsd and C57BL/6J mouse strains using different variants of the Barnes maze

Gernot Riedel (Corresponding Author), Lianne Robinson, Barry Crouch

Research output: Contribution to journalArticle

Abstract

Behavioural flexibility is the ability to switch between tasks and strategies following a change in rules, and involves intact functioning of the medial prefrontal cortex. Impairments of behavioural flexibility have frequently been reported in patients with schizophrenia and rodents with disruption/dysfunction of the prefrontal cortex. The discovery of a mutation in the disrupted in schizophrenia 1 (DISC1) gene in the 129 mouse strain suggests that these mice may be exploited as a 'naturally occurring' model of schizophrenia. The aim of this present study was to assess cognition and behavioural flexibility of 129S2/SvHsd mice in comparison with C57BL/6J mice in the Barnes maze, using three different maze variations that consisted of either 8, 16 or 32 holes. Whereas C57BL/6J mice were able to perform both acquisition and reversal learning in all three mazes, 129S2/SvHsd mice displayed impairments dependent on the complexity of the test. Intact acquisition and reversal occurred in the 8-hole maze; intact acquisition, but impaired reversal, was evident in the 16-hole maze and impaired acquisition was evident in the most difficult 32-hole test. Furthermore, analysis of search strategies confirmed strain differences in the adoption of spatial searches across both acquisition and reversal trials. 129S2/SvHsd mice displayed fewer spatial-type trials than C57BL/6J mice and instead employed more random or serial/chaining search behaviours. The deficits observed in both cognition and behavioural flexibility support the notion of the 129 mouse strain as a potential model of schizophrenia.

Original languageEnglish
Pages (from-to)688-700
Number of pages13
JournalBehavioural Pharmacology
Volume29
Issue number8
Early online date12 Sep 2018
DOIs
Publication statusPublished - 31 Dec 2018

Fingerprint

Inbred C57BL Mouse
Schizophrenia
129 Strain Mouse
Prefrontal Cortex
Cognition
Reversal Learning
Aptitude
Rodentia
Mutation
Spatial Learning
Genes

Cite this

@article{5a677c686f4c49338cf02526d284ce8e,
title = "Spatial learning and flexibility in 129S2/SvHsd and C57BL/6J mouse strains using different variants of the Barnes maze",
abstract = "Behavioural flexibility is the ability to switch between tasks and strategies following a change in rules, and involves intact functioning of the medial prefrontal cortex. Impairments of behavioural flexibility have frequently been reported in patients with schizophrenia and rodents with disruption/dysfunction of the prefrontal cortex. The discovery of a mutation in the disrupted in schizophrenia 1 (DISC1) gene in the 129 mouse strain suggests that these mice may be exploited as a 'naturally occurring' model of schizophrenia. The aim of this present study was to assess cognition and behavioural flexibility of 129S2/SvHsd mice in comparison with C57BL/6J mice in the Barnes maze, using three different maze variations that consisted of either 8, 16 or 32 holes. Whereas C57BL/6J mice were able to perform both acquisition and reversal learning in all three mazes, 129S2/SvHsd mice displayed impairments dependent on the complexity of the test. Intact acquisition and reversal occurred in the 8-hole maze; intact acquisition, but impaired reversal, was evident in the 16-hole maze and impaired acquisition was evident in the most difficult 32-hole test. Furthermore, analysis of search strategies confirmed strain differences in the adoption of spatial searches across both acquisition and reversal trials. 129S2/SvHsd mice displayed fewer spatial-type trials than C57BL/6J mice and instead employed more random or serial/chaining search behaviours. The deficits observed in both cognition and behavioural flexibility support the notion of the 129 mouse strain as a potential model of schizophrenia.",
author = "Gernot Riedel and Lianne Robinson and Barry Crouch",
year = "2018",
month = "12",
day = "31",
doi = "10.1097/FBP.0000000000000433",
language = "English",
volume = "29",
pages = "688--700",
journal = "Behavioural Pharmacology",
issn = "0955-8810",
publisher = "Lippincott Williams & Wilkins",
number = "8",

}

TY - JOUR

T1 - Spatial learning and flexibility in 129S2/SvHsd and C57BL/6J mouse strains using different variants of the Barnes maze

AU - Riedel, Gernot

AU - Robinson, Lianne

AU - Crouch, Barry

PY - 2018/12/31

Y1 - 2018/12/31

N2 - Behavioural flexibility is the ability to switch between tasks and strategies following a change in rules, and involves intact functioning of the medial prefrontal cortex. Impairments of behavioural flexibility have frequently been reported in patients with schizophrenia and rodents with disruption/dysfunction of the prefrontal cortex. The discovery of a mutation in the disrupted in schizophrenia 1 (DISC1) gene in the 129 mouse strain suggests that these mice may be exploited as a 'naturally occurring' model of schizophrenia. The aim of this present study was to assess cognition and behavioural flexibility of 129S2/SvHsd mice in comparison with C57BL/6J mice in the Barnes maze, using three different maze variations that consisted of either 8, 16 or 32 holes. Whereas C57BL/6J mice were able to perform both acquisition and reversal learning in all three mazes, 129S2/SvHsd mice displayed impairments dependent on the complexity of the test. Intact acquisition and reversal occurred in the 8-hole maze; intact acquisition, but impaired reversal, was evident in the 16-hole maze and impaired acquisition was evident in the most difficult 32-hole test. Furthermore, analysis of search strategies confirmed strain differences in the adoption of spatial searches across both acquisition and reversal trials. 129S2/SvHsd mice displayed fewer spatial-type trials than C57BL/6J mice and instead employed more random or serial/chaining search behaviours. The deficits observed in both cognition and behavioural flexibility support the notion of the 129 mouse strain as a potential model of schizophrenia.

AB - Behavioural flexibility is the ability to switch between tasks and strategies following a change in rules, and involves intact functioning of the medial prefrontal cortex. Impairments of behavioural flexibility have frequently been reported in patients with schizophrenia and rodents with disruption/dysfunction of the prefrontal cortex. The discovery of a mutation in the disrupted in schizophrenia 1 (DISC1) gene in the 129 mouse strain suggests that these mice may be exploited as a 'naturally occurring' model of schizophrenia. The aim of this present study was to assess cognition and behavioural flexibility of 129S2/SvHsd mice in comparison with C57BL/6J mice in the Barnes maze, using three different maze variations that consisted of either 8, 16 or 32 holes. Whereas C57BL/6J mice were able to perform both acquisition and reversal learning in all three mazes, 129S2/SvHsd mice displayed impairments dependent on the complexity of the test. Intact acquisition and reversal occurred in the 8-hole maze; intact acquisition, but impaired reversal, was evident in the 16-hole maze and impaired acquisition was evident in the most difficult 32-hole test. Furthermore, analysis of search strategies confirmed strain differences in the adoption of spatial searches across both acquisition and reversal trials. 129S2/SvHsd mice displayed fewer spatial-type trials than C57BL/6J mice and instead employed more random or serial/chaining search behaviours. The deficits observed in both cognition and behavioural flexibility support the notion of the 129 mouse strain as a potential model of schizophrenia.

U2 - 10.1097/FBP.0000000000000433

DO - 10.1097/FBP.0000000000000433

M3 - Article

VL - 29

SP - 688

EP - 700

JO - Behavioural Pharmacology

JF - Behavioural Pharmacology

SN - 0955-8810

IS - 8

ER -