Spatio-chromatic contrast sensitivity under mesopic and photopic light levels

Sophie M. Wuerger* (Corresponding Author), Maliha Ashraf, Minjung Kim, Jasna Martinovic, Maria Perez-Ortiz, Rafał K. Mantiuk

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)
7 Downloads (Pure)

Abstract

Contrast sensitivity functions (CSFs) characterize the sensitivity of the human visual system at different spatial scales, but little is known as to how contrast sensitivity for achromatic and chromatic stimuli changes from a mesopic to a highly photopic range reflecting outdoor illumination levels. The purpose of our study was to further characterize the CSF by measuring both achromatic and chromatic sensitivities for background luminance levels from 0.02 cd/m2 to 7,000 cd/m2. Stimuli consisted of Gabor patches of different spatial frequencies and angular sizes, varying from 0.125 to 6 cpd, which were displayed on a custom high dynamic range (HDR) display with luminance levels up to 15,000 cd/m2. Contrast sensitivity was measured in three directions in color space, an achromatic direction, an isoluminant “red-green” direction, and an S-cone isolating “yellow-violet” direction, selected to isolate the luminance, L/M-cone opponent, and S-cone opponent pathways, respectively, of the early postreceptoral processing stages. Within each session, observers were fully adapted to the fixed background luminance (0.02, 2, 20, 200, 2,000, or 7,000 cd/m2). Our main finding is that the background luminance has a differential effect on achromatic contrast sensitivity compared to chromatic contrast sensitivity. The achromatic contrast sensitivity increases with higher background luminance up to 200 cd/m2 and then shows a sharp decline when background luminance is increased further. In contrast, the chromatic sensitivity curves do not show a significant sensitivity drop at higher luminance levels. We present a computational luminance-dependent model that predicts the CSF for achromatic and chromatic stimuli of arbitrary size.
Original languageEnglish
Article number23
Number of pages26
JournalJournal of Vision
Volume20
Issue number4
Early online date29 Apr 2020
DOIs
Publication statusPublished - Apr 2020

Bibliographical note

Acknowledgements
This research was funded by EPSRC grants EP/P007503, EP/P007910, EP/P007902, and EP/P007600. This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 725253–EyeCode). Data are now available at https://www.repository.cam.ac.uk/handle/1810/304228 and code (MATLAB) from this paper are available at https://pcwww.liv.ac.uk/sophiew/spatio.htm and
https://doi.org/10.17863/CAM.47737. The code includes display calibration routines, DKL to RGB conversion matrix, and fitted model functions. We thank Al Ahumada for helpful comments.

Keywords

  • Achromatic
  • Chromatic
  • Color vision
  • Cone adaptation
  • Contrast sensitivity functions
  • HDR
  • High light level
  • Isoluminance
  • Light adaptation
  • Luminance
  • Mesopic
  • Photopic
  • Spatial vision

Fingerprint

Dive into the research topics of 'Spatio-chromatic contrast sensitivity under mesopic and photopic light levels'. Together they form a unique fingerprint.

Cite this