TY - JOUR
T1 - Spatio‐temporal variability of the isotopic input signal in a partly forested catchment
T2 - Implications for hydrograph separation
AU - Cayuela, Carles
AU - Latron, Jerome
AU - Geris, Josie
AU - Llorens, Pilar
N1 - This research was supported by the projects TransHyMed (CGL2016-75957-R AEI/FEDER, UE) and MASCC-DYNAMITE (PCIN-2017-061/AEI). C. Cayuela was beneficiary of a predoctoral FPI grant (BES-2014-070609) and a pre-doctoral mobility grant (EEBB-I-17-12493). We are grateful to G. Bertran, F. Gallart, A.J. Molina, M. Moreno de las Heras and E. Sánchez-Costa for their support during fieldwork and data analysis. We also thank all the members of the Northern Rivers Institute where part of this study was conceived. Finally, we want to thank M. Eaude for reviewing the English.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g. transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation (IHS) due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in IHS determined pre‐event water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterise this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.
AB - The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g. transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation (IHS) due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in IHS determined pre‐event water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterise this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.
KW - stable water isotopes
KW - catchment input signal
KW - spatio-temporal variability
KW - isotope hydrograph separation
KW - uncertainty
KW - vallcebre research catchments
KW - Vallcebre research catchments
UR - http://www.scopus.com/inward/record.url?scp=85056169296&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/spatiotemporal-variability-isotopic-input-signal-partly-forested-catchment-implications-hydrograph-s
U2 - 10.1002/hyp.13309
DO - 10.1002/hyp.13309
M3 - Article
VL - 33
SP - 36
EP - 46
JO - Hydrological Processes
JF - Hydrological Processes
SN - 0885-6087
ER -