Speeds of sound for (CH4 + He) mixtures from p = (0.5 to 20) MPa at T = (273.16 to 375) K

Daniel Lozano-Martín, Andres Rojo, M. Carmen Martin, David Vega-Maza, José Juan Segovia (Corresponding Author)

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This work aims to provide accurate and wide-ranging experimental new speed of sound data w(p,T) of two binary (CH4 + He) mixtures at a nominal helium content of 5 % and 10 % at pressures p = (0.5 up to 20) MPa and temperatures T = (273.16, 300, 325, 350 and 375) K. For this purpose, the most accurate technique for determining speed of sound in gas phase has been used: the spherical acoustic resonator. Speed of sound is determined with an overall relative expanded (k = 2) uncertainty of 230 parts in 106 and compared to reference models for multicomponent natural gas-like mixtures: AGA8-DC92 and GERG-2008 equations of state. Relative deviations of experimental data from model estimations are outside the experimental uncertainty limit, although all points are mostly within the AGA uncertainty of 0.2 % and GERG uncertainty of 0.5 % and worsen as the helium content increases. Absolute average deviations are better than 0.45 % for GERG and below 0.14 % for AGA models in (0.95 CH4 + 0.05 He) mixture and below 0.83 % for GERG and within 0.22 % for AGA equations in (0.90 CH4 + 0.10 He) mixture.
Original languageEnglish
Article number105869
Number of pages14
JournalThe Journal of Chemical Thermodynamics
Volume139
Early online date19 Jul 2019
DOIs
Publication statusPublished - Dec 2019

    Fingerprint

Keywords

  • speed of sound
  • acoustic resonance
  • methane
  • helium
  • heat capacities as perfect gas
  • virial coefficients
  • Methane
  • Virial coefficients
  • VIRIAL-COEFFICIENTS
  • PRESSURES
  • Helium
  • ARGON
  • Acoustic resonance
  • ACOUSTIC THERMOMETRY
  • MIXTURES
  • GAS-CONSTANT R
  • EQUATION-OF-STATE
  • METHANE
  • Speed of sound
  • TEMPERATURES
  • Heat capacities as perfect gas
  • HELIUM

Cite this