Stability of terrestrial planets in the habitable zone of GI 777 A, HD 72659, GI 614, 47 Uma and HD 4208

N. Asghari, C. Broeg, L. Carone, R. Casas-Miranda, J.C.C. Palacio, I. Csillik, R. Dvorak, F. Freistetter, G. Hadjivantsides, H. Hussmann, A. Khramova, M. Khristoforova, I. Khromova, I. Kitiashivilli, S. Kozlowski, T. Laaskso, T. Laczkowski, D. Lytvinenko, O. Miloni, R. MorishimaA. Moro-Martin, V. Paksyutov, A. Pal, V. Patidar, B. Pecnik, O. Peles, J. Pyo, T. Quinn, A. Rodriguez, M Carmen Romano, E. Saikia, J. Stadel, M. Thiel, N. Todorovic, D. Veras, E.V. Neto, J. Vilagi, W. von Bloh, R. Zechner, E. Zhuchkova

Research output: Contribution to journalArticlepeer-review

66 Citations (Scopus)

Abstract

We have undertaken a thorough dynamical investigation of five extrasolar planetary systems using extensive numerical experiments. The systems Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of whether they could host terrestrial-like planets in their habitable zones (HZ).
First we investigated the mean motion resonances between fictitious terrestrial planets and the existing gas giants in these five extrasolar systems. Then a fine grid of initial conditions for a potential terrestrial planet within the HZ was chosen for each system, from which the stability of orbits was then assessed by direct integrations over a time interval of 1 million years. For each of the five systems the 2-dimensional grid of initial conditions contained 80 eccentricity points for the Jovian planet and up to 160 semimajor axis points for the fictitious planet. The computations were carried out using a Lie-series integration method with an adaptive step size control. This integration method achieves machine precision accuracy in a highly efficient and robust way, requiring no special adjustments when the orbits have large eccentricities.
The stability of orbits was examined with a determination of the Renyi entropy, estimated from recurrence plots, and with a more straightforward method based on the maximum eccentricity achieved by the planet over the 1 million year integration. Additionally, the eccentricity is an indication of the habitability of a terrestrial planet in the HZ; any value of e > 0.2 produces a significant temperature difference on a planet's surface between apoapse and periapse. The results for possible stable orbits for terrestrial planets in habitable zones for the five systems are: for Gl 777 A nearly the entire HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive for a sufficiently long time, while for Gl 614 our results exclude terrestrial planets moving in stable orbits within the HZ.
Studies such as this one are of primary interest to future space missions dedicated to finding habitable terrestrial planets in other stellar systems. Assessing the likelihood of other habitable planets, and more generally the possibility of other life, is the central question of astrobiology today. Our investigation indicates that, from the dynamical point of view, habitable terrestrial planets seem to be compatible with many of the currently discovered extrasolar systems.
Original languageEnglish
Pages (from-to)353-365
Number of pages13
JournalAstronomy & Astrophysics
Volume426
Issue number1
DOIs
Publication statusPublished - Oct 2004

Keywords

  • individual stars G1 777A
  • individual stars 47 Uma
  • individual stars HD 72659
  • individual stars GI 614
  • individual stars HD4208
  • planetary systems
  • extra-solar planets
  • strange attractors
  • recurrence plots
  • 3-body problem
  • systems
  • orbits
  • dynamics
  • resonances
  • elodie
  • motion

Fingerprint

Dive into the research topics of 'Stability of terrestrial planets in the habitable zone of GI 777 A, HD 72659, GI 614, 47 Uma and HD 4208'. Together they form a unique fingerprint.

Cite this