Stabilized RANS simulation of surf zone kinematics and boundary layer processes beneath large-scale plunging waves over a breaker bar

Bjarke Eltard Larsen* (Corresponding Author), Dominic A Van der A, Joep van der Zanden, B. Gerben Ruessink, David R. Fuhrman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

This paper presents numerical simulations of a bichromatic wave group propagating and breaking over a fixed breaker bar. The simulations are performed using a newly stabilized Reynolds-averaged Navier–Stokes (RANS) two-equation turbulence closure, which solves the longstanding problem of over-production of turbulence beneath surface waves in the nearly potential flow region prior to breaking. This model has previously been tested on small-scale spilling breaking regular waves, whereas in this work focus is on full (rather than model) scale application, wave groups (rather than regular waves) and plunging (rather than spilling) breakers. Additionally this paper has novel emphasis on bottom boundary layer dynamics which are very important for cross-shore sediment transport predictions. The model is validated by comparing with results from a previous experimental campaign. The model is shown to predict the surface elevations, velocities and turbulence well in the shoaling and outer surf-zone, avoiding turbulence over-production and incorrect undertow structure typical of standard turbulence closures. Comparison with detailed boundary layer measurements in the shoaling position reveals that the model is able to accurately capture the temporal dynamics of the entire wave boundary layer, including evolution of the boundary layer thickness, velocity overshoot and phase-shifts. Comparison in the surf zone additionally reveals that the model is able to accurately capture the transport of breaking-induced turbulence into the wave boundary layer. The performance of the model indicates that it can be used directly in the simulation of cross-shore sediment transport and morphology and also be used to study important hydrodynamic processes, which can help improve the predictive skill of morphodynamic profile models applied in coastal engineering.
Original languageEnglish
Article number101705
Number of pages20
JournalOcean Modelling
Volume155
Early online date13 Oct 2020
DOIs
Publication statusPublished - 30 Nov 2020

Bibliographical note

Acknowledgements:
We gratefully acknowledge the suggestions by the reviewers which helped to improve the manuscript. The first, second and last authors acknowledge support from the Independent Research Fund Denmark project SWASH: Simulating WAve Surf-zone Hydrodynamics and sea bed morphology, Grant No. 8022-00137B. All authors additionally acknowledge support from the European Community’s Horizon 2020 Programme through the grant to the budget of the Integrated Infrastructure
Initiative HYDRALAB+, Contract No. 654110, in the transnational access project HYBRID. The experimental dataset presented in this paper can be downloaded from http://dx.doi.org/10.5281/zenodo.1404709.

Keywords

  • CFD
  • Turbulence modelling
  • Breaking waves
  • Wave boundary layers

Fingerprint

Dive into the research topics of 'Stabilized RANS simulation of surf zone kinematics and boundary layer processes beneath large-scale plunging waves over a breaker bar'. Together they form a unique fingerprint.

Cite this