Statistical shape modelling of hip and lumbar spine morphology and their relationship in the MRC National Survey of Health and Development

Antastasia V Pavlova, Fiona R Saunders, Stella G Muthuri, Jennifer S Gregory, Rebecca J Barr, Kathryn R Martin, Rebecca J Hardy, Rachel Cooper, Judith E Adams, Diana Kuh, Richard M Aspden (Corresponding Author)

Research output: Contribution to journalArticle

8 Citations (Scopus)
8 Downloads (Pure)

Abstract

The anatomical shape of bones and joints is important for their proper function but quantifying this, and detecting pathological variations, is difficult to do. Numerical descriptions would also enable correlations between joint shapes to be explored. Statistical shape modelling (SSM) is a method of image analysis employing pattern recognition statistics to describe and quantify such shapes from images; it uses principal components analysis to generate modes of variation describing each image in terms of a set of numerical scores after removing global size variation. We used SSM to quantify the shapes of the hip and the lumbar spine in dual-energy x-ray absorptiometry (DXA) images from 1511 individuals in the MRC National Survey of Health and Development at ages 60–64 years. We compared shapes of both joints in men and women and hypothesised that hip and spine shape would be strongly correlated. We also investigated associations with height, weight, body mass index (BMI) and local (hip or lumber spine) bone mineral density. In the hip, all except one of the first 10 modes differed between men and women. Men had a wider femoral neck, smaller neck-shaft angle, increased presence of osteophytes and a loss of the femoral head/neck curvature compared with women. Women presented with a flattening of the femoral head and greater acetabular coverage of the femoral head. Greater weight was associated with a shorter, wider femoral neck and larger greater and lesser trochanters. Taller height was accompanied by a flattening of the curve between superior head and neck and a larger lesser trochanter. Four of the first eight modes describing lumbar spine shape differed between men and women. Women tended to have a more lordotic spine than men with relatively smaller but caudally increasing anterior-posterior (a-p) vertebral diameters. Men were more likely to have a straighter spine with larger vertebral a-p diameters relative to vertebral height than women, increasing cranially. A weak correlation was found between body weight and a-p vertebral diameter. No correlations were found between shape modes and height in men, whereas in women there was a weak positive correlation between height and evenness of spinal curvature. Linear relationships between hip and spine shapes were weak and inconsistent in both sexes, thereby offering little support for our hypothesis.

In conclusion, men and women entering their seventh decade have small but statistically significant differences in the shapes of their hips and their spines. Associations with height, weight, BMI and BMD are small and correspond to subtle variations whose anatomical significance is not yet clear. Correlations between hip and spine shapes are small.
Original languageEnglish
Pages (from-to)248-259
Number of pages12
JournalJournal of Anatomy
Volume231
Issue number2
Early online date31 May 2017
DOIs
Publication statusPublished - Aug 2017

Fingerprint

lumbar spine
national surveys
Health Surveys
hips
Hip
Spine
spine (bones)
modeling
thighs
Femur Neck
Femur
Joints
Thigh
Weights and Measures
neck
Body Mass Index
Neck
Spinal Curvatures
joints (animal)
health

Keywords

  • ageing
  • hip
  • lumbar spine
  • morphology
  • statistical shape modelling

Cite this

Statistical shape modelling of hip and lumbar spine morphology and their relationship in the MRC National Survey of Health and Development. / Pavlova, Antastasia V; Saunders, Fiona R; Muthuri, Stella G; Gregory, Jennifer S; Barr, Rebecca J; Martin, Kathryn R; Hardy, Rebecca J; Cooper, Rachel; Adams, Judith E; Kuh, Diana; Aspden, Richard M (Corresponding Author).

In: Journal of Anatomy, Vol. 231, No. 2, 08.2017, p. 248-259.

Research output: Contribution to journalArticle

Pavlova, Antastasia V ; Saunders, Fiona R ; Muthuri, Stella G ; Gregory, Jennifer S ; Barr, Rebecca J ; Martin, Kathryn R ; Hardy, Rebecca J ; Cooper, Rachel ; Adams, Judith E ; Kuh, Diana ; Aspden, Richard M. / Statistical shape modelling of hip and lumbar spine morphology and their relationship in the MRC National Survey of Health and Development. In: Journal of Anatomy. 2017 ; Vol. 231, No. 2. pp. 248-259.
@article{74d7406ecf344e41a2db90458a52c0d4,
title = "Statistical shape modelling of hip and lumbar spine morphology and their relationship in the MRC National Survey of Health and Development",
abstract = "The anatomical shape of bones and joints is important for their proper function but quantifying this, and detecting pathological variations, is difficult to do. Numerical descriptions would also enable correlations between joint shapes to be explored. Statistical shape modelling (SSM) is a method of image analysis employing pattern recognition statistics to describe and quantify such shapes from images; it uses principal components analysis to generate modes of variation describing each image in terms of a set of numerical scores after removing global size variation. We used SSM to quantify the shapes of the hip and the lumbar spine in dual-energy x-ray absorptiometry (DXA) images from 1511 individuals in the MRC National Survey of Health and Development at ages 60–64 years. We compared shapes of both joints in men and women and hypothesised that hip and spine shape would be strongly correlated. We also investigated associations with height, weight, body mass index (BMI) and local (hip or lumber spine) bone mineral density. In the hip, all except one of the first 10 modes differed between men and women. Men had a wider femoral neck, smaller neck-shaft angle, increased presence of osteophytes and a loss of the femoral head/neck curvature compared with women. Women presented with a flattening of the femoral head and greater acetabular coverage of the femoral head. Greater weight was associated with a shorter, wider femoral neck and larger greater and lesser trochanters. Taller height was accompanied by a flattening of the curve between superior head and neck and a larger lesser trochanter. Four of the first eight modes describing lumbar spine shape differed between men and women. Women tended to have a more lordotic spine than men with relatively smaller but caudally increasing anterior-posterior (a-p) vertebral diameters. Men were more likely to have a straighter spine with larger vertebral a-p diameters relative to vertebral height than women, increasing cranially. A weak correlation was found between body weight and a-p vertebral diameter. No correlations were found between shape modes and height in men, whereas in women there was a weak positive correlation between height and evenness of spinal curvature. Linear relationships between hip and spine shapes were weak and inconsistent in both sexes, thereby offering little support for our hypothesis.In conclusion, men and women entering their seventh decade have small but statistically significant differences in the shapes of their hips and their spines. Associations with height, weight, BMI and BMD are small and correspond to subtle variations whose anatomical significance is not yet clear. Correlations between hip and spine shapes are small.",
keywords = "ageing, hip, lumbar spine, morphology, statistical shape modelling",
author = "Pavlova, {Antastasia V} and Saunders, {Fiona R} and Muthuri, {Stella G} and Gregory, {Jennifer S} and Barr, {Rebecca J} and Martin, {Kathryn R} and Hardy, {Rebecca J} and Rachel Cooper and Adams, {Judith E} and Diana Kuh and Aspden, {Richard M}",
note = "Acknowledgements We thank Dr Michael Machin for his valuable assistance obtaining the images and the University of Aberdeen Data Management Team for programming support for ‘Shape’. The authors are grateful to NSHD study members who took part in the clinic data collection for their continuing support. We thank members of the NSHD scientific and data collection teams at the following centres: MRC Unit for Lifelong Health and Ageing; Wellcome Trust (WT) Clinical Research Facility (CRF) Manchester; WTCRF and Medical Physics at the Western General Hospital in Edinburgh; WTCRF and Department of Nuclear Medicine at University Hospital Birmingham; WTCRF and the Department of Nuclear Medicine at University College London Hospital; CRF and the Department of Medical Physics at the University Hospital of Wales; CRF and Twin Research Unit at St Thomas' Hospital London. Data used in this publication are available to bona fide researchers upon request to the NSHD Data Sharing Committee via a standard application procedure. Further details can be found at: http://www.nshd.mrc.ac.uk/data; https://doi.org/10.5522/nshd/q102.",
year = "2017",
month = "8",
doi = "10.1111/joa.12631",
language = "English",
volume = "231",
pages = "248--259",
journal = "Journal of Anatomy",
issn = "0021-8782",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Statistical shape modelling of hip and lumbar spine morphology and their relationship in the MRC National Survey of Health and Development

AU - Pavlova, Antastasia V

AU - Saunders, Fiona R

AU - Muthuri, Stella G

AU - Gregory, Jennifer S

AU - Barr, Rebecca J

AU - Martin, Kathryn R

AU - Hardy, Rebecca J

AU - Cooper, Rachel

AU - Adams, Judith E

AU - Kuh, Diana

AU - Aspden, Richard M

N1 - Acknowledgements We thank Dr Michael Machin for his valuable assistance obtaining the images and the University of Aberdeen Data Management Team for programming support for ‘Shape’. The authors are grateful to NSHD study members who took part in the clinic data collection for their continuing support. We thank members of the NSHD scientific and data collection teams at the following centres: MRC Unit for Lifelong Health and Ageing; Wellcome Trust (WT) Clinical Research Facility (CRF) Manchester; WTCRF and Medical Physics at the Western General Hospital in Edinburgh; WTCRF and Department of Nuclear Medicine at University Hospital Birmingham; WTCRF and the Department of Nuclear Medicine at University College London Hospital; CRF and the Department of Medical Physics at the University Hospital of Wales; CRF and Twin Research Unit at St Thomas' Hospital London. Data used in this publication are available to bona fide researchers upon request to the NSHD Data Sharing Committee via a standard application procedure. Further details can be found at: http://www.nshd.mrc.ac.uk/data; https://doi.org/10.5522/nshd/q102.

PY - 2017/8

Y1 - 2017/8

N2 - The anatomical shape of bones and joints is important for their proper function but quantifying this, and detecting pathological variations, is difficult to do. Numerical descriptions would also enable correlations between joint shapes to be explored. Statistical shape modelling (SSM) is a method of image analysis employing pattern recognition statistics to describe and quantify such shapes from images; it uses principal components analysis to generate modes of variation describing each image in terms of a set of numerical scores after removing global size variation. We used SSM to quantify the shapes of the hip and the lumbar spine in dual-energy x-ray absorptiometry (DXA) images from 1511 individuals in the MRC National Survey of Health and Development at ages 60–64 years. We compared shapes of both joints in men and women and hypothesised that hip and spine shape would be strongly correlated. We also investigated associations with height, weight, body mass index (BMI) and local (hip or lumber spine) bone mineral density. In the hip, all except one of the first 10 modes differed between men and women. Men had a wider femoral neck, smaller neck-shaft angle, increased presence of osteophytes and a loss of the femoral head/neck curvature compared with women. Women presented with a flattening of the femoral head and greater acetabular coverage of the femoral head. Greater weight was associated with a shorter, wider femoral neck and larger greater and lesser trochanters. Taller height was accompanied by a flattening of the curve between superior head and neck and a larger lesser trochanter. Four of the first eight modes describing lumbar spine shape differed between men and women. Women tended to have a more lordotic spine than men with relatively smaller but caudally increasing anterior-posterior (a-p) vertebral diameters. Men were more likely to have a straighter spine with larger vertebral a-p diameters relative to vertebral height than women, increasing cranially. A weak correlation was found between body weight and a-p vertebral diameter. No correlations were found between shape modes and height in men, whereas in women there was a weak positive correlation between height and evenness of spinal curvature. Linear relationships between hip and spine shapes were weak and inconsistent in both sexes, thereby offering little support for our hypothesis.In conclusion, men and women entering their seventh decade have small but statistically significant differences in the shapes of their hips and their spines. Associations with height, weight, BMI and BMD are small and correspond to subtle variations whose anatomical significance is not yet clear. Correlations between hip and spine shapes are small.

AB - The anatomical shape of bones and joints is important for their proper function but quantifying this, and detecting pathological variations, is difficult to do. Numerical descriptions would also enable correlations between joint shapes to be explored. Statistical shape modelling (SSM) is a method of image analysis employing pattern recognition statistics to describe and quantify such shapes from images; it uses principal components analysis to generate modes of variation describing each image in terms of a set of numerical scores after removing global size variation. We used SSM to quantify the shapes of the hip and the lumbar spine in dual-energy x-ray absorptiometry (DXA) images from 1511 individuals in the MRC National Survey of Health and Development at ages 60–64 years. We compared shapes of both joints in men and women and hypothesised that hip and spine shape would be strongly correlated. We also investigated associations with height, weight, body mass index (BMI) and local (hip or lumber spine) bone mineral density. In the hip, all except one of the first 10 modes differed between men and women. Men had a wider femoral neck, smaller neck-shaft angle, increased presence of osteophytes and a loss of the femoral head/neck curvature compared with women. Women presented with a flattening of the femoral head and greater acetabular coverage of the femoral head. Greater weight was associated with a shorter, wider femoral neck and larger greater and lesser trochanters. Taller height was accompanied by a flattening of the curve between superior head and neck and a larger lesser trochanter. Four of the first eight modes describing lumbar spine shape differed between men and women. Women tended to have a more lordotic spine than men with relatively smaller but caudally increasing anterior-posterior (a-p) vertebral diameters. Men were more likely to have a straighter spine with larger vertebral a-p diameters relative to vertebral height than women, increasing cranially. A weak correlation was found between body weight and a-p vertebral diameter. No correlations were found between shape modes and height in men, whereas in women there was a weak positive correlation between height and evenness of spinal curvature. Linear relationships between hip and spine shapes were weak and inconsistent in both sexes, thereby offering little support for our hypothesis.In conclusion, men and women entering their seventh decade have small but statistically significant differences in the shapes of their hips and their spines. Associations with height, weight, BMI and BMD are small and correspond to subtle variations whose anatomical significance is not yet clear. Correlations between hip and spine shapes are small.

KW - ageing

KW - hip

KW - lumbar spine

KW - morphology

KW - statistical shape modelling

U2 - 10.1111/joa.12631

DO - 10.1111/joa.12631

M3 - Article

VL - 231

SP - 248

EP - 259

JO - Journal of Anatomy

JF - Journal of Anatomy

SN - 0021-8782

IS - 2

ER -