Stochastic dynamics of model proteins on a directed graph

Lorenzo Bongini, Lapo Casetti, Roberto Livi, Antonio Politi, Alessandro Torcini

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

A method for reconstructing the potential energy landscape of simple polypeptidic chains is described. We show how to obtain a faithful representation of the energy landscape in terms of a suitable directed graph. Topological and dynamical indicators of the graph are shown to yield an effective estimate of the time scales associated with both folding and equilibration processes. This conclusion is drawn by comparing molecular dynamics simulations at constant temperature with the dynamics on the graph, defined as a temperature-dependent Markov process. The main advantage of the graph representation is that its dynamics can be naturally renormalized by collecting nodes into "hubs" while redefining their connectivity. We show that the dynamical properties at large time scales are preserved by the renormalization procedure. Moreover, we obtain clear indications that the heteropolymers exhibit common topological properties, at variance with the homopolymer, whose peculiar graph structure stems from its spatial homogeneity. In order to distinguish between "fast" and "slow" folders, one has to look at the kinetic properties of the corresponding directed graphs. In particular, we find that the average time needed to the fast folder for reaching its native configuration is two orders of magnitude smaller than its equilibration time while for the bad folder these time scales are comparable.

Original languageEnglish
Article number061925
Number of pages13
JournalPhysical Review. E, Statistical, Nonlinear and Soft Matter Physics
Volume79
Issue number6
DOIs
Publication statusPublished - Jun 2009

Keywords

  • global optimization
  • energy landscapes

Cite this

Stochastic dynamics of model proteins on a directed graph. / Bongini, Lorenzo; Casetti, Lapo; Livi, Roberto; Politi, Antonio; Torcini, Alessandro.

In: Physical Review. E, Statistical, Nonlinear and Soft Matter Physics, Vol. 79, No. 6, 061925, 06.2009.

Research output: Contribution to journalArticle

Bongini, Lorenzo ; Casetti, Lapo ; Livi, Roberto ; Politi, Antonio ; Torcini, Alessandro. / Stochastic dynamics of model proteins on a directed graph. In: Physical Review. E, Statistical, Nonlinear and Soft Matter Physics. 2009 ; Vol. 79, No. 6.
@article{319a2c85592b445e8d86fb155e0c6699,
title = "Stochastic dynamics of model proteins on a directed graph",
abstract = "A method for reconstructing the potential energy landscape of simple polypeptidic chains is described. We show how to obtain a faithful representation of the energy landscape in terms of a suitable directed graph. Topological and dynamical indicators of the graph are shown to yield an effective estimate of the time scales associated with both folding and equilibration processes. This conclusion is drawn by comparing molecular dynamics simulations at constant temperature with the dynamics on the graph, defined as a temperature-dependent Markov process. The main advantage of the graph representation is that its dynamics can be naturally renormalized by collecting nodes into {"}hubs{"} while redefining their connectivity. We show that the dynamical properties at large time scales are preserved by the renormalization procedure. Moreover, we obtain clear indications that the heteropolymers exhibit common topological properties, at variance with the homopolymer, whose peculiar graph structure stems from its spatial homogeneity. In order to distinguish between {"}fast{"} and {"}slow{"} folders, one has to look at the kinetic properties of the corresponding directed graphs. In particular, we find that the average time needed to the fast folder for reaching its native configuration is two orders of magnitude smaller than its equilibration time while for the bad folder these time scales are comparable.",
keywords = "global optimization, energy landscapes",
author = "Lorenzo Bongini and Lapo Casetti and Roberto Livi and Antonio Politi and Alessandro Torcini",
year = "2009",
month = "6",
doi = "10.1103/PhysRevE.79.061925",
language = "English",
volume = "79",
journal = "Physical Review. E, Statistical, Nonlinear and Soft Matter Physics",
issn = "1539-3755",
publisher = "AMER PHYSICAL SOC",
number = "6",

}

TY - JOUR

T1 - Stochastic dynamics of model proteins on a directed graph

AU - Bongini, Lorenzo

AU - Casetti, Lapo

AU - Livi, Roberto

AU - Politi, Antonio

AU - Torcini, Alessandro

PY - 2009/6

Y1 - 2009/6

N2 - A method for reconstructing the potential energy landscape of simple polypeptidic chains is described. We show how to obtain a faithful representation of the energy landscape in terms of a suitable directed graph. Topological and dynamical indicators of the graph are shown to yield an effective estimate of the time scales associated with both folding and equilibration processes. This conclusion is drawn by comparing molecular dynamics simulations at constant temperature with the dynamics on the graph, defined as a temperature-dependent Markov process. The main advantage of the graph representation is that its dynamics can be naturally renormalized by collecting nodes into "hubs" while redefining their connectivity. We show that the dynamical properties at large time scales are preserved by the renormalization procedure. Moreover, we obtain clear indications that the heteropolymers exhibit common topological properties, at variance with the homopolymer, whose peculiar graph structure stems from its spatial homogeneity. In order to distinguish between "fast" and "slow" folders, one has to look at the kinetic properties of the corresponding directed graphs. In particular, we find that the average time needed to the fast folder for reaching its native configuration is two orders of magnitude smaller than its equilibration time while for the bad folder these time scales are comparable.

AB - A method for reconstructing the potential energy landscape of simple polypeptidic chains is described. We show how to obtain a faithful representation of the energy landscape in terms of a suitable directed graph. Topological and dynamical indicators of the graph are shown to yield an effective estimate of the time scales associated with both folding and equilibration processes. This conclusion is drawn by comparing molecular dynamics simulations at constant temperature with the dynamics on the graph, defined as a temperature-dependent Markov process. The main advantage of the graph representation is that its dynamics can be naturally renormalized by collecting nodes into "hubs" while redefining their connectivity. We show that the dynamical properties at large time scales are preserved by the renormalization procedure. Moreover, we obtain clear indications that the heteropolymers exhibit common topological properties, at variance with the homopolymer, whose peculiar graph structure stems from its spatial homogeneity. In order to distinguish between "fast" and "slow" folders, one has to look at the kinetic properties of the corresponding directed graphs. In particular, we find that the average time needed to the fast folder for reaching its native configuration is two orders of magnitude smaller than its equilibration time while for the bad folder these time scales are comparable.

KW - global optimization

KW - energy landscapes

U2 - 10.1103/PhysRevE.79.061925

DO - 10.1103/PhysRevE.79.061925

M3 - Article

VL - 79

JO - Physical Review. E, Statistical, Nonlinear and Soft Matter Physics

JF - Physical Review. E, Statistical, Nonlinear and Soft Matter Physics

SN - 1539-3755

IS - 6

M1 - 061925

ER -