Sulphur fertilization influences the sulphur species composition in Allium sativum

sulphomics using HPLC-ICPMS/MS-ESI-MS/MS

Andrea Raab, Marilena Ronzan, Joerg Feldmann

Research output: Contribution to journalArticle

4 Citations (Scopus)
5 Downloads (Pure)

Abstract

Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on the low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80 % of the total sulphur present in A. sativum. Roots and bulbs of A.sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitive to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (eg. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as sulphur-specific detector and ESI-MS as molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S-containing compounds in roots is depending on the sulphur fertilization.
Original languageEnglish
Pages (from-to)1429-1438
Number of pages10
JournalMetallomics
Volume9
Issue number10
Early online date7 Sep 2017
DOIs
Publication statusPublished - 1 Oct 2017

Fingerprint

Garlic
Sulfur
Fertilization
High Pressure Liquid Chromatography
Chemical analysis
Metabolites
Sulfur Compounds
Detectors
Smell
Acids
Molecular Weight
Molecular weight

Cite this

Sulphur fertilization influences the sulphur species composition in Allium sativum : sulphomics using HPLC-ICPMS/MS-ESI-MS/MS. / Raab, Andrea; Ronzan, Marilena; Feldmann, Joerg.

In: Metallomics, Vol. 9, No. 10, 01.10.2017, p. 1429-1438 .

Research output: Contribution to journalArticle

@article{6255a4c1a1424a869d9ff2c0236394a7,
title = "Sulphur fertilization influences the sulphur species composition in Allium sativum: sulphomics using HPLC-ICPMS/MS-ESI-MS/MS",
abstract = "Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on the low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80 {\%} of the total sulphur present in A. sativum. Roots and bulbs of A.sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitive to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (eg. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as sulphur-specific detector and ESI-MS as molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S-containing compounds in roots is depending on the sulphur fertilization.",
author = "Andrea Raab and Marilena Ronzan and Joerg Feldmann",
note = "We thank Agilent, UK for access to the Agilent 6200 series TOF/6500 series Q-TOF. M.R. especially thanks the ERASMUS programme and G.Falasca for support.",
year = "2017",
month = "10",
day = "1",
doi = "10.1039/C7MT00098G",
language = "English",
volume = "9",
pages = "1429--1438",
journal = "Metallomics",
issn = "1756-5901",
publisher = "Royal Society of Chemistry",
number = "10",

}

TY - JOUR

T1 - Sulphur fertilization influences the sulphur species composition in Allium sativum

T2 - sulphomics using HPLC-ICPMS/MS-ESI-MS/MS

AU - Raab, Andrea

AU - Ronzan, Marilena

AU - Feldmann, Joerg

N1 - We thank Agilent, UK for access to the Agilent 6200 series TOF/6500 series Q-TOF. M.R. especially thanks the ERASMUS programme and G.Falasca for support.

PY - 2017/10/1

Y1 - 2017/10/1

N2 - Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on the low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80 % of the total sulphur present in A. sativum. Roots and bulbs of A.sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitive to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (eg. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as sulphur-specific detector and ESI-MS as molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S-containing compounds in roots is depending on the sulphur fertilization.

AB - Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on the low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80 % of the total sulphur present in A. sativum. Roots and bulbs of A.sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitive to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (eg. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as sulphur-specific detector and ESI-MS as molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S-containing compounds in roots is depending on the sulphur fertilization.

U2 - 10.1039/C7MT00098G

DO - 10.1039/C7MT00098G

M3 - Article

VL - 9

SP - 1429

EP - 1438

JO - Metallomics

JF - Metallomics

SN - 1756-5901

IS - 10

ER -