Summand absorbing submodules of a module over a semiring

Zur Izhakian (Corresponding Author), Manfred Knebusch (Corresponding Author), Louis Rowen (Corresponding Author)

Research output: Contribution to journalArticle

9 Downloads (Pure)

Abstract

An R-module V over a semiring R lacks zero sums (LZS) if x+y=0⇒x=y=0. More generally, a submodule W of V is summand absorbing in V if ∀x,y∈V: x+y∈W⇒x∈W,y∈W. These arise in tropical algebra and modules over idempotent semirings. We explore the lattice of summand absorbing submodules of a given LZS module, especially those that are finitely generated, in terms of the lattice-theoretic Krull dimension, and describe their explicit generation.
Original languageEnglish
Pages (from-to)3262-3294
Number of pages33
JournalJournal of Pure and Applied Algebra
Volume223
Issue number8
Early online date9 Nov 2018
DOIs
Publication statusPublished - 31 Aug 2019

Fingerprint

Semiring
Absorbing
Zero-sum
Module
Idempotent Semiring
Krull Dimension
Finitely Generated
Algebra

Keywords

  • Semiring
  • lacking zero sums
  • direct sum decomposition
  • free (semi)module
  • projective (semi)module
  • indecomposable
  • semidirect complement
  • upper bound monoid
  • weak complement
  • Upper bound monoid
  • Lacking zero sums
  • Direct sum decomposition
  • Indecomposable
  • Projective (semi)module

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Summand absorbing submodules of a module over a semiring. / Izhakian, Zur (Corresponding Author); Knebusch, Manfred (Corresponding Author); Rowen, Louis (Corresponding Author).

In: Journal of Pure and Applied Algebra, Vol. 223, No. 8, 31.08.2019, p. 3262-3294.

Research output: Contribution to journalArticle

Izhakian, Zur ; Knebusch, Manfred ; Rowen, Louis. / Summand absorbing submodules of a module over a semiring. In: Journal of Pure and Applied Algebra. 2019 ; Vol. 223, No. 8. pp. 3262-3294.
@article{0829e385792441788ba2587c10b0b9ef,
title = "Summand absorbing submodules of a module over a semiring",
abstract = "An R-module V over a semiring R lacks zero sums (LZS) if x+y=0⇒x=y=0. More generally, a submodule W of V is summand absorbing in V if ∀x,y∈V: x+y∈W⇒x∈W,y∈W. These arise in tropical algebra and modules over idempotent semirings. We explore the lattice of summand absorbing submodules of a given LZS module, especially those that are finitely generated, in terms of the lattice-theoretic Krull dimension, and describe their explicit generation.",
keywords = "Semiring, lacking zero sums, direct sum decomposition, free (semi)module, projective (semi)module, indecomposable, semidirect complement, upper bound monoid, weak complement, Upper bound monoid, Lacking zero sums, Direct sum decomposition, Indecomposable, Projective (semi)module",
author = "Zur Izhakian and Manfred Knebusch and Louis Rowen",
year = "2019",
month = "8",
day = "31",
doi = "10.1016/j.jpaa.2018.11.001",
language = "English",
volume = "223",
pages = "3262--3294",
journal = "Journal of Pure and Applied Algebra",
issn = "0022-4049",
publisher = "Elsevier",
number = "8",

}

TY - JOUR

T1 - Summand absorbing submodules of a module over a semiring

AU - Izhakian, Zur

AU - Knebusch, Manfred

AU - Rowen, Louis

PY - 2019/8/31

Y1 - 2019/8/31

N2 - An R-module V over a semiring R lacks zero sums (LZS) if x+y=0⇒x=y=0. More generally, a submodule W of V is summand absorbing in V if ∀x,y∈V: x+y∈W⇒x∈W,y∈W. These arise in tropical algebra and modules over idempotent semirings. We explore the lattice of summand absorbing submodules of a given LZS module, especially those that are finitely generated, in terms of the lattice-theoretic Krull dimension, and describe their explicit generation.

AB - An R-module V over a semiring R lacks zero sums (LZS) if x+y=0⇒x=y=0. More generally, a submodule W of V is summand absorbing in V if ∀x,y∈V: x+y∈W⇒x∈W,y∈W. These arise in tropical algebra and modules over idempotent semirings. We explore the lattice of summand absorbing submodules of a given LZS module, especially those that are finitely generated, in terms of the lattice-theoretic Krull dimension, and describe their explicit generation.

KW - Semiring

KW - lacking zero sums

KW - direct sum decomposition

KW - free (semi)module

KW - projective (semi)module

KW - indecomposable

KW - semidirect complement

KW - upper bound monoid

KW - weak complement

KW - Upper bound monoid

KW - Lacking zero sums

KW - Direct sum decomposition

KW - Indecomposable

KW - Projective (semi)module

UR - http://www.scopus.com/inward/record.url?scp=85056831608&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/summand-absorbing-submodules-module-semiring

U2 - 10.1016/j.jpaa.2018.11.001

DO - 10.1016/j.jpaa.2018.11.001

M3 - Article

VL - 223

SP - 3262

EP - 3294

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 8

ER -