Support varieties for Weyl modules over bad primes

David John Benson, Brian D. Boe, Leonard Chastkofsky, Daniel K. Nakano, Jo Jang Hyun, Jonathan Kujawa, Nadia Mazza, Philip Bergonio, Bobbe Cooper, Jeremiah Hower, Kenyon J. Platt, Caroline Wright, UGA VIGRE Algebra Group

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Let G be a reductive algebraic group scheme defined over F-p and G(1) be the first Frobenius kernel. For any dominant weight lambda, one can construct the Weyl module V(lambda). When p is a good prime for G, the G(1)-support variety of V (lambda) was computed by Nakano, Parshall and Vella in [D. K. Nakano, B.J. Parshall, D.C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math. 547 (2002) 15-49]. We complete this calculation by computing the G(1)-supports of the Weyl modules over fields of bad characteristic.

Original languageEnglish
Pages (from-to)602-633
Number of pages32
JournalJournal of Algebra
Volume312
Issue number2
Early online date21 Mar 2007
DOIs
Publication statusPublished - 15 Jun 2007

Keywords

  • cohomology
  • support varieties
  • Weyl modules
  • finite-group schemes
  • lie-algebras
  • nilpotent elements
  • unipotent elements
  • field

Cite this

Benson, D. J., Boe, B. D., Chastkofsky, L., Nakano, D. K., Jang Hyun, J., Kujawa, J., ... UGA VIGRE Algebra Group (2007). Support varieties for Weyl modules over bad primes. Journal of Algebra, 312(2), 602-633. https://doi.org/10.1016/j.jalgebra.2007.03.008