Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants

Peng Wang, Monica Calvo-Polanco, Guilhem Reyt, Marie Barberon, Chloe Champeyroux, Véronique Santoni, Christophe Maurel, Rochus B Franke, Karin Ljung, Ondrej Novak, Niko Geldner, Yann Boursiac, David E Salt (Corresponding Author)

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)
7 Downloads (Pure)


The endodermis is a key cell layer in plant roots that contributes to the controlled uptake of water and mineral nutrients into plants. In order to provide such functionality the endodermal cell wall has specific chemical modifications consisting of lignin bands (Casparian strips) that encircle each cell, and deposition of a waxy-like substance (suberin) between the wall and the plasma membrane. These two extracellular deposits provide control of diffusion enabling the endodermis to direct the movement of water and solutes into and out of the vascular system in roots. Loss of integrity of the Casparian strip-based apoplastic barrier is sensed by the leakage of a small peptide from the stele into the cortex. Here, we report that such sensing of barrier integrity leads to the rebalancing of water and mineral nutrient uptake, compensating for breakage of Casparian strips. This rebalancing involves both a reduction in root hydraulic conductivity driven by deactivation of aquaporins, and downstream limitation of ion leakage through deposition of suberin. These responses in the root are also coupled to a reduction in water demand in the shoot mediated by ABA-dependent stomatal closure.

Original languageEnglish
Article number4227
JournalScientific Reports
Publication statusPublished - 12 Mar 2019




Dive into the research topics of 'Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants'. Together they form a unique fingerprint.

Cite this