TY - JOUR
T1 - Synthesis, Crystal Structures and Photoluminescent Properties of One-Dimensional Europium(III)- and Terbium(III)-Glutarate Coordination Polymers, and Their Applications for the Sensing of Fe3+ and Nitroaromatics
AU - Hussain, Sajjad
AU - Chen, Xuenian
AU - Harrison, William T. A.
AU - Elsegood, Mark R. J.
AU - Ahmad, Saeed
AU - Li, Shujun
AU - Awoyelu, David
N1 - Acknowledgements
X.C. thanks the National Natural Science Foundation of China (Grants No. 1771057 and U1804253). S.H. is grateful to Henan Normal University for a postdoctoral fellowship.
Supplementary data
CCDC numbers 1919755 and 1919756 for 1 and 2 respectively, contain the crystal data of this article. These data are available from Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif. The supporting material of this article can be download from the journal webpage.
PY - 2019/11/5
Y1 - 2019/11/5
N2 - Two lanthanide–glutarate coordination polymers, viz.: {[Eu(C5H6O4)(H2O)4]Cl}n, (1) and [Tb(C5H7O4)(C5H6O4)(H2O)2]n, (2) have been synthesized and characterized by IR spectroscopy, thermogravimetric analysis and X-ray crystallography. In 1, the Eu(III) ions are coordinated by four O atoms from two bidentate chelating carboxylates, one O atom from a bridging carboxylate and four O atoms from water molecules adopting an EuO9 muffin shaped coordination geometry. In 2, the Tb(III) ions are coordinated by six O atoms from three bidentate chelating carboxylates, one O atom from a bridging carboxylate and two O atoms from water molecules to generate muffin like TbO9 polyhedron. In both compounds, the metal polyhedra share edges, producing centrosymmetric Ln2O2 diamonds, and are linked into [001] chains by bridging glutarate di-anions. The crystal structures are stabilized by O–HLO and O–HLCl hydrogen bonds in 1, and O–HLO hydrogen bonds in 2. Compound 1 exhibits a red emission attributed to the 5D0 → 7FJ (J = 1–4) transitions of the Eu(III) ion, whereas 2 displays green emission corresponding to the 5D4 → 7FJ (J = 0–6) transitions of the Tb(III) ion. Both the compounds exhibit high sensitivity and selectivity for Fe3+ ions due to luminescence quenching compared to other metal ions, which include; Na+, Mg2+, Al3+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+ and Cd2+. Compounds 1 and 2 also show high luminescence quenching sensitivity for 4-nitrophenol over the other aromatic and nitroaromatic compounds, namely; bromobenzene, 1,3-dimethylbenzene, nitrobenzene, 4-nitrotolune, 4-nitrophenol, 2,6-dinitrophenol and 2,4,6-trinitrophenol.
AB - Two lanthanide–glutarate coordination polymers, viz.: {[Eu(C5H6O4)(H2O)4]Cl}n, (1) and [Tb(C5H7O4)(C5H6O4)(H2O)2]n, (2) have been synthesized and characterized by IR spectroscopy, thermogravimetric analysis and X-ray crystallography. In 1, the Eu(III) ions are coordinated by four O atoms from two bidentate chelating carboxylates, one O atom from a bridging carboxylate and four O atoms from water molecules adopting an EuO9 muffin shaped coordination geometry. In 2, the Tb(III) ions are coordinated by six O atoms from three bidentate chelating carboxylates, one O atom from a bridging carboxylate and two O atoms from water molecules to generate muffin like TbO9 polyhedron. In both compounds, the metal polyhedra share edges, producing centrosymmetric Ln2O2 diamonds, and are linked into [001] chains by bridging glutarate di-anions. The crystal structures are stabilized by O–HLO and O–HLCl hydrogen bonds in 1, and O–HLO hydrogen bonds in 2. Compound 1 exhibits a red emission attributed to the 5D0 → 7FJ (J = 1–4) transitions of the Eu(III) ion, whereas 2 displays green emission corresponding to the 5D4 → 7FJ (J = 0–6) transitions of the Tb(III) ion. Both the compounds exhibit high sensitivity and selectivity for Fe3+ ions due to luminescence quenching compared to other metal ions, which include; Na+, Mg2+, Al3+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+ and Cd2+. Compounds 1 and 2 also show high luminescence quenching sensitivity for 4-nitrophenol over the other aromatic and nitroaromatic compounds, namely; bromobenzene, 1,3-dimethylbenzene, nitrobenzene, 4-nitrotolune, 4-nitrophenol, 2,6-dinitrophenol and 2,4,6-trinitrophenol.
KW - Europium(III)
KW - Terbium(III)
KW - Glutarate
KW - X-ray structure
KW - Luminescence
KW - Sensors
KW - glutarate
KW - LN
KW - terbium(III)
KW - europium(III)
KW - COMPLEXES
KW - METAL-ORGANIC FRAMEWORK
KW - NETWORKS
KW - LUMINESCENT PROPERTIES
KW - SENSITIVE DETECTION
KW - luminescence
KW - sensors
KW - HYBRID MATERIALS
KW - CE(III)
KW - EU(III)
KW - MAGNETIC-PROPERTIES
UR - http://www.scopus.com/inward/record.url?scp=85075995661&partnerID=8YFLogxK
U2 - 10.3389/fchem.2019.00728
DO - 10.3389/fchem.2019.00728
M3 - Article
C2 - 31828057
VL - 7
SP - 728
JO - Frontiers in Chemistry
JF - Frontiers in Chemistry
SN - 2296-2646
M1 - 728
ER -