Tandem Mass Tags for Comparative and Discovery Proteomics

Oliver Pagel, Laxmikanth Kollipara, Albert Sickmann* (Corresponding Author)

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Relative or comparative proteomics provides valuable insights about the altered protein abundances across different biological samples in a single (labeled) or series (label-free) of LC-MS measurement(s). Chemical labeling of peptides using isobaric mass tags for identification and quantification of different proteomes simultaneously has become a routine in the so-called discovery proteomics in the past decade. One of the earliest isobaric tags-based technologies is TMT (tandem mass tags), which relies on the comparison of the unique "reporter ions" intensities for relative peptide/protein quantification. This differential labeling approach has evolved over time with respect to its multiplexing capability, i.e., from just 2 samples (TMTduplex) to 10 samples (TMT10plex) and a nowadays of up to 16 samples (TMTpro 16plex). Here, we describe a straightforward protocol to perform relatively deep proteome quantitative analyses using TMT10plex.
Original languageEnglish
Title of host publicationQuantitative Methods in Proteomics
EditorsKatrin Marcus, Martin Eisenacher, Barbara Sitek
Place of PublicationNew York
PublisherHumana Press
Pages117-131
Number of pages15
Edition2nd
ISBN (Electronic)978-1-0716-1024-4
ISBN (Print)978-1-0716-1023-7, 978-1-0716-1026-8
DOIs
Publication statusPublished - 2021

Publication series

NameMethods in molecular biology (Clifton, N.J.)
Volume2228
ISSN (Print)1064-3745
ISSN (Electronic)1940-6029

Keywords

  • LC–MS/MS
  • Multiplexing
  • Relative quantitative proteomics
  • TMT

Fingerprint Dive into the research topics of 'Tandem Mass Tags for Comparative and Discovery Proteomics'. Together they form a unique fingerprint.

Cite this