The ancestral shape hypothesis

an evolutionary explanation for the occurrence of intervertebral disc herniation in humans

Kimberly A Plomp, Una Strand Vidarsdottir, Darlene A Weston, Keith Dobney, Mark Collard

Research output: Contribution to journalArticle

6 Citations (Scopus)
5 Downloads (Pure)

Abstract

Background Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl’s nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism. Results The study employed geometric morphometric techniques. Two-dimensional landmarks were used to capture the shapes of the superior aspect of the body and posterior elements of the last thoracic and first lumbar vertebrae of chimpanzees, orangutans, and humans with and without Schmorl’s nodes. These data were subjected to multivariate statistical analyses. Canonical Variates Analysis indicated that the last thoracic and first lumbar vertebrae of healthy humans, chimpanzees, and orangutans can be distinguished from each other (p<0.028), but vertebrae of pathological humans and chimpanzees cannot (p>0.4590). The Procrustes distance between pathological humans and chimpanzees was found to be smaller than the one between pathological and healthy humans. This was the case for both vertebrae. Pair-wise MANOVAs of Principal Component scores for both the thoracic and lumbar vertebrae found significant differences between all pairs of taxa (p<0.029), except pathological humans vs chimpanzees (p>0.367). Together, these results suggest that human vertebrae with Schmorl’s nodes are closer in shape to chimpanzee vertebrae than are healthy human vertebrae. Conclusions The results support the hypothesis that intervertebral disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within H. sapiens and therefore are less well adapted for bipedalism. This finding not only has clinical implications but also illustrates the benefits of bringing the tools of evolutionary biology to bear on problems in medicine and public health.
Original languageEnglish
Article number68
JournalBMC Evolutionary Biology
Volume15
Early online date27 Apr 2015
DOIs
Publication statusPublished - 27 Apr 2015

Fingerprint

intervertebral disks
vertebrae
bipedalism
Pan troglodytes
Pongo pygmaeus
chest
canonical analysis
evolutionary biology
locomotion
spinal diseases
primate
medicine
public health
spine (bones)
Primates
Biological Sciences

Keywords

  • Back pain
  • Disc herniation
  • Vertebral shape
  • Bipedalism
  • Geometric morphometrics
  • Schmorl's nodes

Cite this

The ancestral shape hypothesis : an evolutionary explanation for the occurrence of intervertebral disc herniation in humans. / Plomp, Kimberly A; Vidarsdottir, Una Strand; Weston, Darlene A; Dobney, Keith; Collard, Mark.

In: BMC Evolutionary Biology, Vol. 15, 68, 27.04.2015.

Research output: Contribution to journalArticle

@article{5724778eb160493d8d28b49a0d5b6e5c,
title = "The ancestral shape hypothesis: an evolutionary explanation for the occurrence of intervertebral disc herniation in humans",
abstract = "Background Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl’s nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism. Results The study employed geometric morphometric techniques. Two-dimensional landmarks were used to capture the shapes of the superior aspect of the body and posterior elements of the last thoracic and first lumbar vertebrae of chimpanzees, orangutans, and humans with and without Schmorl’s nodes. These data were subjected to multivariate statistical analyses. Canonical Variates Analysis indicated that the last thoracic and first lumbar vertebrae of healthy humans, chimpanzees, and orangutans can be distinguished from each other (p<0.028), but vertebrae of pathological humans and chimpanzees cannot (p>0.4590). The Procrustes distance between pathological humans and chimpanzees was found to be smaller than the one between pathological and healthy humans. This was the case for both vertebrae. Pair-wise MANOVAs of Principal Component scores for both the thoracic and lumbar vertebrae found significant differences between all pairs of taxa (p<0.029), except pathological humans vs chimpanzees (p>0.367). Together, these results suggest that human vertebrae with Schmorl’s nodes are closer in shape to chimpanzee vertebrae than are healthy human vertebrae. Conclusions The results support the hypothesis that intervertebral disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within H. sapiens and therefore are less well adapted for bipedalism. This finding not only has clinical implications but also illustrates the benefits of bringing the tools of evolutionary biology to bear on problems in medicine and public health.",
keywords = "Back pain, Disc herniation, Vertebral shape, Bipedalism, Geometric morphometrics, Schmorl's nodes",
author = "Plomp, {Kimberly A} and Vidarsdottir, {Una Strand} and Weston, {Darlene A} and Keith Dobney and Mark Collard",
note = "This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgments We thank York Osteoarchaeology, Pre-Construct Archaeology, Durham University, the Natural History Museum, and the American Museum of Natural History for access to the specimens used in the study. We also thank Helgi P{\'e}tur Gunnarsson for his assistance with the analyses. The study was funded by the Social Sciences and Humanities Research Council, Canada Research Chairs Program, Canada Foundation for Innovation, British Columbia Knowledge Development Fund, MITACS, and Simon Fraser University. We thank the editor and two anonymous reviewers for their insightful comments and suggestions on this paper.",
year = "2015",
month = "4",
day = "27",
doi = "10.1186/s12862-015-0336-y",
language = "English",
volume = "15",
journal = "BMC Evolutionary Biology",
issn = "1471-2148",
publisher = "BioMed Central",

}

TY - JOUR

T1 - The ancestral shape hypothesis

T2 - an evolutionary explanation for the occurrence of intervertebral disc herniation in humans

AU - Plomp, Kimberly A

AU - Vidarsdottir, Una Strand

AU - Weston, Darlene A

AU - Dobney, Keith

AU - Collard, Mark

N1 - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgments We thank York Osteoarchaeology, Pre-Construct Archaeology, Durham University, the Natural History Museum, and the American Museum of Natural History for access to the specimens used in the study. We also thank Helgi Pétur Gunnarsson for his assistance with the analyses. The study was funded by the Social Sciences and Humanities Research Council, Canada Research Chairs Program, Canada Foundation for Innovation, British Columbia Knowledge Development Fund, MITACS, and Simon Fraser University. We thank the editor and two anonymous reviewers for their insightful comments and suggestions on this paper.

PY - 2015/4/27

Y1 - 2015/4/27

N2 - Background Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl’s nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism. Results The study employed geometric morphometric techniques. Two-dimensional landmarks were used to capture the shapes of the superior aspect of the body and posterior elements of the last thoracic and first lumbar vertebrae of chimpanzees, orangutans, and humans with and without Schmorl’s nodes. These data were subjected to multivariate statistical analyses. Canonical Variates Analysis indicated that the last thoracic and first lumbar vertebrae of healthy humans, chimpanzees, and orangutans can be distinguished from each other (p<0.028), but vertebrae of pathological humans and chimpanzees cannot (p>0.4590). The Procrustes distance between pathological humans and chimpanzees was found to be smaller than the one between pathological and healthy humans. This was the case for both vertebrae. Pair-wise MANOVAs of Principal Component scores for both the thoracic and lumbar vertebrae found significant differences between all pairs of taxa (p<0.029), except pathological humans vs chimpanzees (p>0.367). Together, these results suggest that human vertebrae with Schmorl’s nodes are closer in shape to chimpanzee vertebrae than are healthy human vertebrae. Conclusions The results support the hypothesis that intervertebral disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within H. sapiens and therefore are less well adapted for bipedalism. This finding not only has clinical implications but also illustrates the benefits of bringing the tools of evolutionary biology to bear on problems in medicine and public health.

AB - Background Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl’s nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism. Results The study employed geometric morphometric techniques. Two-dimensional landmarks were used to capture the shapes of the superior aspect of the body and posterior elements of the last thoracic and first lumbar vertebrae of chimpanzees, orangutans, and humans with and without Schmorl’s nodes. These data were subjected to multivariate statistical analyses. Canonical Variates Analysis indicated that the last thoracic and first lumbar vertebrae of healthy humans, chimpanzees, and orangutans can be distinguished from each other (p<0.028), but vertebrae of pathological humans and chimpanzees cannot (p>0.4590). The Procrustes distance between pathological humans and chimpanzees was found to be smaller than the one between pathological and healthy humans. This was the case for both vertebrae. Pair-wise MANOVAs of Principal Component scores for both the thoracic and lumbar vertebrae found significant differences between all pairs of taxa (p<0.029), except pathological humans vs chimpanzees (p>0.367). Together, these results suggest that human vertebrae with Schmorl’s nodes are closer in shape to chimpanzee vertebrae than are healthy human vertebrae. Conclusions The results support the hypothesis that intervertebral disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within H. sapiens and therefore are less well adapted for bipedalism. This finding not only has clinical implications but also illustrates the benefits of bringing the tools of evolutionary biology to bear on problems in medicine and public health.

KW - Back pain

KW - Disc herniation

KW - Vertebral shape

KW - Bipedalism

KW - Geometric morphometrics

KW - Schmorl's nodes

U2 - 10.1186/s12862-015-0336-y

DO - 10.1186/s12862-015-0336-y

M3 - Article

VL - 15

JO - BMC Evolutionary Biology

JF - BMC Evolutionary Biology

SN - 1471-2148

M1 - 68

ER -