The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma

A systematic review and economic evaluation

Jennifer Margaret Burr, Graham Mowatt, Rodolfo Andrés Hernández, Muhammad Ardul Rehman Siddiqui, Jonathan Alistair Cook, Tania Lourenco, Craig R Ramsay, Luke David Vale, Cynthia Mary Fraser, Augusto Azuara-Blanco, J. Deeks, J. Cairns, R. Wormald, S. McPherson, K. Rabindranath, Adrian Maxwell Grant

Research output: Contribution to journalArticle

143 Citations (Scopus)

Abstract

OBJECTIVES: To assess whether open angle glaucoma (OAG) screening meets the UK National Screening Committee criteria, to compare screening strategies with case finding, to estimate test parameters, to model estimates of cost and cost-effectiveness, and to identify areas for future research. DATA SOURCES: Major electronic databases were searched up to December 2005. REVIEW METHODS: Screening strategies were developed by wide consultation. Markov submodels were developed to represent screening strategies. Parameter estimates were determined by systematic reviews of epidemiology, economic evaluations of screening, and effectiveness (test accuracy, screening and treatment). Tailored highly sensitive electronic searches were undertaken. RESULTS: Most potential screening tests reviewed had an estimated specificity of 85% or higher. No test was clearly most accurate, with only a few, heterogeneous studies for each test. No randomised controlled trials (RCTs) of screening were identified. Based on two treatment RCTs, early treatment reduces the risk of progression. Extrapolating from this, and assuming accelerated progression with advancing disease severity, without treatment the mean time to blindness in at least one eye was approximately 23 years, compared to 35 years with treatment. Prevalence would have to be about 3-4% in 40 year olds with a screening interval of 10 years to approach cost-effectiveness. It is predicted that screening might be cost-effective in a 50-year-old cohort at a prevalence of 4% with a 10-year screening interval. General population screening at any age, thus, appears not to be cost-effective. Selective screening of groups with higher prevalence (family history, black ethnicity) might be worthwhile, although this would only cover 6% of the population. Extension to include other at-risk cohorts (e.g. myopia and diabetes) would include 37% of the general population, but the prevalence is then too low for screening to be considered cost-effective. Screening using a test with initial automated classification followed by assessment by a specialised optometrist, for test positives, was more cost-effective than initial specialised optometric assessment. The cost-effectiveness of the screening programme was highly sensitive to the perspective on costs (NHS or societal). In the base-case model, the NHS costs of visual impairment were estimated as 669 pounds. If annual societal costs were 8800 pounds, then screening might be considered cost-effective for a 40-year-old cohort with 1% OAG prevalence assuming a willingness to pay of 30,000 pounds per quality-adjusted life-year. Of lesser importance were changes to estimates of attendance for sight tests, incidence of OAG, rate of progression and utility values for each stage of OAG severity. Cost-effectiveness was not particularly sensitive to the accuracy of screening tests within the ranges observed. However, a highly specific test is required to reduce large numbers of false-positive referrals. The findings that population screening is unlikely to be cost-effective are based on an economic model whose parameter estimates have considerable uncertainty. In particular, if rate of progression and/or costs of visual impairment are higher than estimated then screening could be cost-effective. CONCLUSIONS: While population screening is not cost-effective, the targeted screening of high-risk groups may be. Procedures for identifying those at risk, for quality assuring the programme, as well as adequate service provision for those screened positive would all be needed. Glaucoma detection can be improved by increasing attendance for eye examination, and improving the performance of current testing by either refining practice or adding in a technology-based first assessment, the latter being the more cost-effective option. This has implications for any future organisational changes in community eye-care services. Further research should aim to develop and provide quality data to populate the economic model, by conducting a feasibility study of interventions to improve detection, by obtaining further data on costs of blindness, risk of progression and health outcomes, and by conducting an RCT of interventions to improve the uptake of glaucoma testing.
Original languageEnglish
Pages (from-to)1-190
Number of pages190
JournalHealth Technology Assessment
Volume11
Issue number41
DOIs
Publication statusPublished - 2007

Fingerprint

Open Angle Glaucoma
Cost-Benefit Analysis
Costs and Cost Analysis
Economic Models
Randomized Controlled Trials
Population
Vision Disorders
Blindness
Glaucoma
Referral and Consultation
Therapeutics
Organizational Innovation
Quality-Adjusted Life Years
Myopia
Feasibility Studies
Uncertainty

Keywords

  • age factors
  • cost-benefit analysis
  • disease progression
  • glaucoma, open-angle
  • humans
  • sensitivity and specificity
  • technology assessment, biomedical
  • time factors
  • treatment outcome
  • vision screening
  • Cost-benefit Analysis
  • Glaucoma, Open-Angle
  • Screening
  • Health Technology Assessment
  • Program Evaluation

Cite this

The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma : A systematic review and economic evaluation. / Burr, Jennifer Margaret; Mowatt, Graham; Hernández, Rodolfo Andrés; Siddiqui, Muhammad Ardul Rehman; Cook, Jonathan Alistair; Lourenco, Tania; Ramsay, Craig R; Vale, Luke David; Fraser, Cynthia Mary; Azuara-Blanco, Augusto; Deeks, J.; Cairns, J.; Wormald, R.; McPherson, S.; Rabindranath, K.; Grant, Adrian Maxwell.

In: Health Technology Assessment, Vol. 11, No. 41, 2007, p. 1-190.

Research output: Contribution to journalArticle

Burr, JM, Mowatt, G, Hernández, RA, Siddiqui, MAR, Cook, JA, Lourenco, T, Ramsay, CR, Vale, LD, Fraser, CM, Azuara-Blanco, A, Deeks, J, Cairns, J, Wormald, R, McPherson, S, Rabindranath, K & Grant, AM 2007, 'The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: A systematic review and economic evaluation', Health Technology Assessment, vol. 11, no. 41, pp. 1-190. https://doi.org/10.3310/hta11410
Burr, Jennifer Margaret ; Mowatt, Graham ; Hernández, Rodolfo Andrés ; Siddiqui, Muhammad Ardul Rehman ; Cook, Jonathan Alistair ; Lourenco, Tania ; Ramsay, Craig R ; Vale, Luke David ; Fraser, Cynthia Mary ; Azuara-Blanco, Augusto ; Deeks, J. ; Cairns, J. ; Wormald, R. ; McPherson, S. ; Rabindranath, K. ; Grant, Adrian Maxwell. / The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma : A systematic review and economic evaluation. In: Health Technology Assessment. 2007 ; Vol. 11, No. 41. pp. 1-190.
@article{fa594f42fd224bc892469f92c843770b,
title = "The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: A systematic review and economic evaluation",
abstract = "OBJECTIVES: To assess whether open angle glaucoma (OAG) screening meets the UK National Screening Committee criteria, to compare screening strategies with case finding, to estimate test parameters, to model estimates of cost and cost-effectiveness, and to identify areas for future research. DATA SOURCES: Major electronic databases were searched up to December 2005. REVIEW METHODS: Screening strategies were developed by wide consultation. Markov submodels were developed to represent screening strategies. Parameter estimates were determined by systematic reviews of epidemiology, economic evaluations of screening, and effectiveness (test accuracy, screening and treatment). Tailored highly sensitive electronic searches were undertaken. RESULTS: Most potential screening tests reviewed had an estimated specificity of 85{\%} or higher. No test was clearly most accurate, with only a few, heterogeneous studies for each test. No randomised controlled trials (RCTs) of screening were identified. Based on two treatment RCTs, early treatment reduces the risk of progression. Extrapolating from this, and assuming accelerated progression with advancing disease severity, without treatment the mean time to blindness in at least one eye was approximately 23 years, compared to 35 years with treatment. Prevalence would have to be about 3-4{\%} in 40 year olds with a screening interval of 10 years to approach cost-effectiveness. It is predicted that screening might be cost-effective in a 50-year-old cohort at a prevalence of 4{\%} with a 10-year screening interval. General population screening at any age, thus, appears not to be cost-effective. Selective screening of groups with higher prevalence (family history, black ethnicity) might be worthwhile, although this would only cover 6{\%} of the population. Extension to include other at-risk cohorts (e.g. myopia and diabetes) would include 37{\%} of the general population, but the prevalence is then too low for screening to be considered cost-effective. Screening using a test with initial automated classification followed by assessment by a specialised optometrist, for test positives, was more cost-effective than initial specialised optometric assessment. The cost-effectiveness of the screening programme was highly sensitive to the perspective on costs (NHS or societal). In the base-case model, the NHS costs of visual impairment were estimated as 669 pounds. If annual societal costs were 8800 pounds, then screening might be considered cost-effective for a 40-year-old cohort with 1{\%} OAG prevalence assuming a willingness to pay of 30,000 pounds per quality-adjusted life-year. Of lesser importance were changes to estimates of attendance for sight tests, incidence of OAG, rate of progression and utility values for each stage of OAG severity. Cost-effectiveness was not particularly sensitive to the accuracy of screening tests within the ranges observed. However, a highly specific test is required to reduce large numbers of false-positive referrals. The findings that population screening is unlikely to be cost-effective are based on an economic model whose parameter estimates have considerable uncertainty. In particular, if rate of progression and/or costs of visual impairment are higher than estimated then screening could be cost-effective. CONCLUSIONS: While population screening is not cost-effective, the targeted screening of high-risk groups may be. Procedures for identifying those at risk, for quality assuring the programme, as well as adequate service provision for those screened positive would all be needed. Glaucoma detection can be improved by increasing attendance for eye examination, and improving the performance of current testing by either refining practice or adding in a technology-based first assessment, the latter being the more cost-effective option. This has implications for any future organisational changes in community eye-care services. Further research should aim to develop and provide quality data to populate the economic model, by conducting a feasibility study of interventions to improve detection, by obtaining further data on costs of blindness, risk of progression and health outcomes, and by conducting an RCT of interventions to improve the uptake of glaucoma testing.",
keywords = "age factors, cost-benefit analysis, disease progression, glaucoma, open-angle, humans, sensitivity and specificity, technology assessment, biomedical, time factors, treatment outcome, vision screening, Cost-benefit Analysis, Glaucoma, Open-Angle, Screening, Health Technology Assessment, Program Evaluation",
author = "Burr, {Jennifer Margaret} and Graham Mowatt and Hern{\'a}ndez, {Rodolfo Andr{\'e}s} and Siddiqui, {Muhammad Ardul Rehman} and Cook, {Jonathan Alistair} and Tania Lourenco and Ramsay, {Craig R} and Vale, {Luke David} and Fraser, {Cynthia Mary} and Augusto Azuara-Blanco and J. Deeks and J. Cairns and R. Wormald and S. McPherson and K. Rabindranath and Grant, {Adrian Maxwell}",
year = "2007",
doi = "10.3310/hta11410",
language = "English",
volume = "11",
pages = "1--190",
journal = "Health Technology Assessment",
issn = "1366-5278",
publisher = "National Co-ordinating Centre for HTA",
number = "41",

}

TY - JOUR

T1 - The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma

T2 - A systematic review and economic evaluation

AU - Burr, Jennifer Margaret

AU - Mowatt, Graham

AU - Hernández, Rodolfo Andrés

AU - Siddiqui, Muhammad Ardul Rehman

AU - Cook, Jonathan Alistair

AU - Lourenco, Tania

AU - Ramsay, Craig R

AU - Vale, Luke David

AU - Fraser, Cynthia Mary

AU - Azuara-Blanco, Augusto

AU - Deeks, J.

AU - Cairns, J.

AU - Wormald, R.

AU - McPherson, S.

AU - Rabindranath, K.

AU - Grant, Adrian Maxwell

PY - 2007

Y1 - 2007

N2 - OBJECTIVES: To assess whether open angle glaucoma (OAG) screening meets the UK National Screening Committee criteria, to compare screening strategies with case finding, to estimate test parameters, to model estimates of cost and cost-effectiveness, and to identify areas for future research. DATA SOURCES: Major electronic databases were searched up to December 2005. REVIEW METHODS: Screening strategies were developed by wide consultation. Markov submodels were developed to represent screening strategies. Parameter estimates were determined by systematic reviews of epidemiology, economic evaluations of screening, and effectiveness (test accuracy, screening and treatment). Tailored highly sensitive electronic searches were undertaken. RESULTS: Most potential screening tests reviewed had an estimated specificity of 85% or higher. No test was clearly most accurate, with only a few, heterogeneous studies for each test. No randomised controlled trials (RCTs) of screening were identified. Based on two treatment RCTs, early treatment reduces the risk of progression. Extrapolating from this, and assuming accelerated progression with advancing disease severity, without treatment the mean time to blindness in at least one eye was approximately 23 years, compared to 35 years with treatment. Prevalence would have to be about 3-4% in 40 year olds with a screening interval of 10 years to approach cost-effectiveness. It is predicted that screening might be cost-effective in a 50-year-old cohort at a prevalence of 4% with a 10-year screening interval. General population screening at any age, thus, appears not to be cost-effective. Selective screening of groups with higher prevalence (family history, black ethnicity) might be worthwhile, although this would only cover 6% of the population. Extension to include other at-risk cohorts (e.g. myopia and diabetes) would include 37% of the general population, but the prevalence is then too low for screening to be considered cost-effective. Screening using a test with initial automated classification followed by assessment by a specialised optometrist, for test positives, was more cost-effective than initial specialised optometric assessment. The cost-effectiveness of the screening programme was highly sensitive to the perspective on costs (NHS or societal). In the base-case model, the NHS costs of visual impairment were estimated as 669 pounds. If annual societal costs were 8800 pounds, then screening might be considered cost-effective for a 40-year-old cohort with 1% OAG prevalence assuming a willingness to pay of 30,000 pounds per quality-adjusted life-year. Of lesser importance were changes to estimates of attendance for sight tests, incidence of OAG, rate of progression and utility values for each stage of OAG severity. Cost-effectiveness was not particularly sensitive to the accuracy of screening tests within the ranges observed. However, a highly specific test is required to reduce large numbers of false-positive referrals. The findings that population screening is unlikely to be cost-effective are based on an economic model whose parameter estimates have considerable uncertainty. In particular, if rate of progression and/or costs of visual impairment are higher than estimated then screening could be cost-effective. CONCLUSIONS: While population screening is not cost-effective, the targeted screening of high-risk groups may be. Procedures for identifying those at risk, for quality assuring the programme, as well as adequate service provision for those screened positive would all be needed. Glaucoma detection can be improved by increasing attendance for eye examination, and improving the performance of current testing by either refining practice or adding in a technology-based first assessment, the latter being the more cost-effective option. This has implications for any future organisational changes in community eye-care services. Further research should aim to develop and provide quality data to populate the economic model, by conducting a feasibility study of interventions to improve detection, by obtaining further data on costs of blindness, risk of progression and health outcomes, and by conducting an RCT of interventions to improve the uptake of glaucoma testing.

AB - OBJECTIVES: To assess whether open angle glaucoma (OAG) screening meets the UK National Screening Committee criteria, to compare screening strategies with case finding, to estimate test parameters, to model estimates of cost and cost-effectiveness, and to identify areas for future research. DATA SOURCES: Major electronic databases were searched up to December 2005. REVIEW METHODS: Screening strategies were developed by wide consultation. Markov submodels were developed to represent screening strategies. Parameter estimates were determined by systematic reviews of epidemiology, economic evaluations of screening, and effectiveness (test accuracy, screening and treatment). Tailored highly sensitive electronic searches were undertaken. RESULTS: Most potential screening tests reviewed had an estimated specificity of 85% or higher. No test was clearly most accurate, with only a few, heterogeneous studies for each test. No randomised controlled trials (RCTs) of screening were identified. Based on two treatment RCTs, early treatment reduces the risk of progression. Extrapolating from this, and assuming accelerated progression with advancing disease severity, without treatment the mean time to blindness in at least one eye was approximately 23 years, compared to 35 years with treatment. Prevalence would have to be about 3-4% in 40 year olds with a screening interval of 10 years to approach cost-effectiveness. It is predicted that screening might be cost-effective in a 50-year-old cohort at a prevalence of 4% with a 10-year screening interval. General population screening at any age, thus, appears not to be cost-effective. Selective screening of groups with higher prevalence (family history, black ethnicity) might be worthwhile, although this would only cover 6% of the population. Extension to include other at-risk cohorts (e.g. myopia and diabetes) would include 37% of the general population, but the prevalence is then too low for screening to be considered cost-effective. Screening using a test with initial automated classification followed by assessment by a specialised optometrist, for test positives, was more cost-effective than initial specialised optometric assessment. The cost-effectiveness of the screening programme was highly sensitive to the perspective on costs (NHS or societal). In the base-case model, the NHS costs of visual impairment were estimated as 669 pounds. If annual societal costs were 8800 pounds, then screening might be considered cost-effective for a 40-year-old cohort with 1% OAG prevalence assuming a willingness to pay of 30,000 pounds per quality-adjusted life-year. Of lesser importance were changes to estimates of attendance for sight tests, incidence of OAG, rate of progression and utility values for each stage of OAG severity. Cost-effectiveness was not particularly sensitive to the accuracy of screening tests within the ranges observed. However, a highly specific test is required to reduce large numbers of false-positive referrals. The findings that population screening is unlikely to be cost-effective are based on an economic model whose parameter estimates have considerable uncertainty. In particular, if rate of progression and/or costs of visual impairment are higher than estimated then screening could be cost-effective. CONCLUSIONS: While population screening is not cost-effective, the targeted screening of high-risk groups may be. Procedures for identifying those at risk, for quality assuring the programme, as well as adequate service provision for those screened positive would all be needed. Glaucoma detection can be improved by increasing attendance for eye examination, and improving the performance of current testing by either refining practice or adding in a technology-based first assessment, the latter being the more cost-effective option. This has implications for any future organisational changes in community eye-care services. Further research should aim to develop and provide quality data to populate the economic model, by conducting a feasibility study of interventions to improve detection, by obtaining further data on costs of blindness, risk of progression and health outcomes, and by conducting an RCT of interventions to improve the uptake of glaucoma testing.

KW - age factors

KW - cost-benefit analysis

KW - disease progression

KW - glaucoma, open-angle

KW - humans

KW - sensitivity and specificity

KW - technology assessment, biomedical

KW - time factors

KW - treatment outcome

KW - vision screening

KW - Cost-benefit Analysis

KW - Glaucoma, Open-Angle

KW - Screening

KW - Health Technology Assessment

KW - Program Evaluation

U2 - 10.3310/hta11410

DO - 10.3310/hta11410

M3 - Article

VL - 11

SP - 1

EP - 190

JO - Health Technology Assessment

JF - Health Technology Assessment

SN - 1366-5278

IS - 41

ER -