The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

Christian Schiffer, Randell Stephenson, Gordon N. Oakey, Bo H Jacobsen

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (∼82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (∼35–36 km) and comparable velocity–depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ∼24–30 km in the Eurekan fold and thrust belt (∼79.7°–80.6°N) to ∼16–20 km in the Hazen Stable Block (HSB; ∼80.6°–81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (∼48 km) at ∼79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1–4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.
Original languageEnglish
Pages (from-to)1579-1600
Number of pages22
JournalGeophysical Journal International
Volume204
Issue number3
Early online date28 Jan 2016
DOIs
Publication statusPublished - Mar 2016

Fingerprint

crustal structure
orogenic belt
Seismographs
Greenland
orogeny
Tectonics
fold and thrust belt
Canada
thrust
Paleogene
Crystalline materials
crusts
crustal root
crust
cratons
seismographs
crustal thickness
metasediment
seismograph
Caledonian orogeny

Keywords

  • body waves
  • intra-plate processes
  • continental tectonics : compressional
  • crustal strcture
  • Arctic region

Cite this

The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt. / Schiffer, Christian; Stephenson, Randell; Oakey, Gordon N.; Jacobsen, Bo H.

In: Geophysical Journal International, Vol. 204, No. 3, 03.2016, p. 1579-1600.

Research output: Contribution to journalArticle

@article{18bea511e7f349f69a454c9796c80f80,
title = "The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt",
abstract = "Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (∼82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (∼35–36 km) and comparable velocity–depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ∼24–30 km in the Eurekan fold and thrust belt (∼79.7°–80.6°N) to ∼16–20 km in the Hazen Stable Block (HSB; ∼80.6°–81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (∼48 km) at ∼79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1–4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.",
keywords = "body waves, intra-plate processes, continental tectonics : compressional, crustal strcture, Arctic region",
author = "Christian Schiffer and Randell Stephenson and Oakey, {Gordon N.} and Jacobsen, {Bo H}",
year = "2016",
month = "3",
doi = "10.1093/gji/ggv539",
language = "English",
volume = "204",
pages = "1579--1600",
journal = "Geophysical Journal International",
issn = "0956-540X",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

AU - Schiffer, Christian

AU - Stephenson, Randell

AU - Oakey, Gordon N.

AU - Jacobsen, Bo H

PY - 2016/3

Y1 - 2016/3

N2 - Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (∼82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (∼35–36 km) and comparable velocity–depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ∼24–30 km in the Eurekan fold and thrust belt (∼79.7°–80.6°N) to ∼16–20 km in the Hazen Stable Block (HSB; ∼80.6°–81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (∼48 km) at ∼79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1–4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.

AB - Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (∼82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (∼35–36 km) and comparable velocity–depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ∼24–30 km in the Eurekan fold and thrust belt (∼79.7°–80.6°N) to ∼16–20 km in the Hazen Stable Block (HSB; ∼80.6°–81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (∼48 km) at ∼79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1–4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.

KW - body waves

KW - intra-plate processes

KW - continental tectonics : compressional

KW - crustal strcture

KW - Arctic region

U2 - 10.1093/gji/ggv539

DO - 10.1093/gji/ggv539

M3 - Article

VL - 204

SP - 1579

EP - 1600

JO - Geophysical Journal International

JF - Geophysical Journal International

SN - 0956-540X

IS - 3

ER -