The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J. Mark Cock, Lieven Sterck, Pierre Rouze, Delphine Scornet, Andrew E. Allen, Grigoris Amoutzias, Veronique Anthouard, Francois Artiguenave, Jean-Marc Aury, Jonathan H. Badger, Bank Beszteri, Kenny Billiau, Eric Bonnet, John H. Bothwell, Chris Bowler, Catherine Boyen, Colin Brownlee, Carl J. Carrano, Benedicte Charrier, Ga Youn Cho & 57 others Susana M. Coelho, Jonas Collen, Erwan Corre, Corinne Da Silva, Ludovic Delage, Nicolas Delaroque, Simon M. Dittami, Sylvie Doulbeau, Marek Elias, Garry Farnham, Claire M. M. Gachon, Bernhard Gschloessl, Svenja Heesch, Kamel Jabbari, Claire Jubin, Hiroshi Kawai, Kei Kimura, Bernard Kloareg, Frithjof C. Kuepper, Daniel Lang, Aude Le Bail, Catherine Leblanc, Patrice Lerouge, Martin Lohr, Pascal J. Lopez, Cindy Martens, Florian Maumus, Gurvan Michel, Diego Miranda-Saavedra, Julia Morales, Herve Moreau, Taizo Motomura, Chikako Nagasato, Carolyn A. Napoli, David R. Nelson, Pi Nyvall-Collen, Akira F. Peters, Cyril Pommier, Philippe Potin, Julie Poulain, Hadi Quesneville, Betsy Read, Stefan A. Rensing, Andres Ritter, Sylvie Rousvoal, Manoj Samanta, Gaelle Samson, Declan C. Schroeder, Beatrice Segurens, Martina Strittmatter, Thierry Tonon, James W. Tregear, Klaus Valentin, Peter von Dassow, Takahiro Yamagishi, Yves Van de Peer, Patrick Wincker

Research output: Contribution to journalArticle

492 Citations (Scopus)

Abstract

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

Original languageEnglish
Pages (from-to)617-621
Number of pages5
JournalNature
Volume465
Issue number7298
DOIs
Publication statusPublished - 3 Jun 2010

Keywords

  • evolution
  • developmental biology

Cite this

Cock, J. M., Sterck, L., Rouze, P., Scornet, D., Allen, A. E., Amoutzias, G., ... Wincker, P. (2010). The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298), 617-621. https://doi.org/10.1038/nature09016

The Ectocarpus genome and the independent evolution of multicellularity in brown algae. / Cock, J. Mark; Sterck, Lieven; Rouze, Pierre; Scornet, Delphine; Allen, Andrew E.; Amoutzias, Grigoris; Anthouard, Veronique; Artiguenave, Francois; Aury, Jean-Marc; Badger, Jonathan H.; Beszteri, Bank; Billiau, Kenny; Bonnet, Eric; Bothwell, John H.; Bowler, Chris; Boyen, Catherine; Brownlee, Colin; Carrano, Carl J.; Charrier, Benedicte; Cho, Ga Youn; Coelho, Susana M.; Collen, Jonas; Corre, Erwan; Da Silva, Corinne; Delage, Ludovic; Delaroque, Nicolas; Dittami, Simon M.; Doulbeau, Sylvie; Elias, Marek; Farnham, Garry; Gachon, Claire M. M.; Gschloessl, Bernhard; Heesch, Svenja; Jabbari, Kamel; Jubin, Claire; Kawai, Hiroshi; Kimura, Kei; Kloareg, Bernard; Kuepper, Frithjof C.; Lang, Daniel; Le Bail, Aude; Leblanc, Catherine; Lerouge, Patrice; Lohr, Martin; Lopez, Pascal J.; Martens, Cindy; Maumus, Florian; Michel, Gurvan; Miranda-Saavedra, Diego; Morales, Julia; Moreau, Herve; Motomura, Taizo; Nagasato, Chikako; Napoli, Carolyn A.; Nelson, David R.; Nyvall-Collen, Pi; Peters, Akira F.; Pommier, Cyril; Potin, Philippe; Poulain, Julie; Quesneville, Hadi; Read, Betsy; Rensing, Stefan A.; Ritter, Andres; Rousvoal, Sylvie; Samanta, Manoj; Samson, Gaelle; Schroeder, Declan C.; Segurens, Beatrice; Strittmatter, Martina; Tonon, Thierry; Tregear, James W.; Valentin, Klaus; von Dassow, Peter; Yamagishi, Takahiro; Van de Peer, Yves; Wincker, Patrick.

In: Nature, Vol. 465, No. 7298, 03.06.2010, p. 617-621.

Research output: Contribution to journalArticle

Cock, JM, Sterck, L, Rouze, P, Scornet, D, Allen, AE, Amoutzias, G, Anthouard, V, Artiguenave, F, Aury, J-M, Badger, JH, Beszteri, B, Billiau, K, Bonnet, E, Bothwell, JH, Bowler, C, Boyen, C, Brownlee, C, Carrano, CJ, Charrier, B, Cho, GY, Coelho, SM, Collen, J, Corre, E, Da Silva, C, Delage, L, Delaroque, N, Dittami, SM, Doulbeau, S, Elias, M, Farnham, G, Gachon, CMM, Gschloessl, B, Heesch, S, Jabbari, K, Jubin, C, Kawai, H, Kimura, K, Kloareg, B, Kuepper, FC, Lang, D, Le Bail, A, Leblanc, C, Lerouge, P, Lohr, M, Lopez, PJ, Martens, C, Maumus, F, Michel, G, Miranda-Saavedra, D, Morales, J, Moreau, H, Motomura, T, Nagasato, C, Napoli, CA, Nelson, DR, Nyvall-Collen, P, Peters, AF, Pommier, C, Potin, P, Poulain, J, Quesneville, H, Read, B, Rensing, SA, Ritter, A, Rousvoal, S, Samanta, M, Samson, G, Schroeder, DC, Segurens, B, Strittmatter, M, Tonon, T, Tregear, JW, Valentin, K, von Dassow, P, Yamagishi, T, Van de Peer, Y & Wincker, P 2010, 'The Ectocarpus genome and the independent evolution of multicellularity in brown algae', Nature, vol. 465, no. 7298, pp. 617-621. https://doi.org/10.1038/nature09016
Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010 Jun 3;465(7298):617-621. https://doi.org/10.1038/nature09016
Cock, J. Mark ; Sterck, Lieven ; Rouze, Pierre ; Scornet, Delphine ; Allen, Andrew E. ; Amoutzias, Grigoris ; Anthouard, Veronique ; Artiguenave, Francois ; Aury, Jean-Marc ; Badger, Jonathan H. ; Beszteri, Bank ; Billiau, Kenny ; Bonnet, Eric ; Bothwell, John H. ; Bowler, Chris ; Boyen, Catherine ; Brownlee, Colin ; Carrano, Carl J. ; Charrier, Benedicte ; Cho, Ga Youn ; Coelho, Susana M. ; Collen, Jonas ; Corre, Erwan ; Da Silva, Corinne ; Delage, Ludovic ; Delaroque, Nicolas ; Dittami, Simon M. ; Doulbeau, Sylvie ; Elias, Marek ; Farnham, Garry ; Gachon, Claire M. M. ; Gschloessl, Bernhard ; Heesch, Svenja ; Jabbari, Kamel ; Jubin, Claire ; Kawai, Hiroshi ; Kimura, Kei ; Kloareg, Bernard ; Kuepper, Frithjof C. ; Lang, Daniel ; Le Bail, Aude ; Leblanc, Catherine ; Lerouge, Patrice ; Lohr, Martin ; Lopez, Pascal J. ; Martens, Cindy ; Maumus, Florian ; Michel, Gurvan ; Miranda-Saavedra, Diego ; Morales, Julia ; Moreau, Herve ; Motomura, Taizo ; Nagasato, Chikako ; Napoli, Carolyn A. ; Nelson, David R. ; Nyvall-Collen, Pi ; Peters, Akira F. ; Pommier, Cyril ; Potin, Philippe ; Poulain, Julie ; Quesneville, Hadi ; Read, Betsy ; Rensing, Stefan A. ; Ritter, Andres ; Rousvoal, Sylvie ; Samanta, Manoj ; Samson, Gaelle ; Schroeder, Declan C. ; Segurens, Beatrice ; Strittmatter, Martina ; Tonon, Thierry ; Tregear, James W. ; Valentin, Klaus ; von Dassow, Peter ; Yamagishi, Takahiro ; Van de Peer, Yves ; Wincker, Patrick. / The Ectocarpus genome and the independent evolution of multicellularity in brown algae. In: Nature. 2010 ; Vol. 465, No. 7298. pp. 617-621.
@article{32e199ed5a224e9ea764929f6b4dffda,
title = "The Ectocarpus genome and the independent evolution of multicellularity in brown algae",
abstract = "Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.",
keywords = "evolution, developmental biology",
author = "Cock, {J. Mark} and Lieven Sterck and Pierre Rouze and Delphine Scornet and Allen, {Andrew E.} and Grigoris Amoutzias and Veronique Anthouard and Francois Artiguenave and Jean-Marc Aury and Badger, {Jonathan H.} and Bank Beszteri and Kenny Billiau and Eric Bonnet and Bothwell, {John H.} and Chris Bowler and Catherine Boyen and Colin Brownlee and Carrano, {Carl J.} and Benedicte Charrier and Cho, {Ga Youn} and Coelho, {Susana M.} and Jonas Collen and Erwan Corre and {Da Silva}, Corinne and Ludovic Delage and Nicolas Delaroque and Dittami, {Simon M.} and Sylvie Doulbeau and Marek Elias and Garry Farnham and Gachon, {Claire M. M.} and Bernhard Gschloessl and Svenja Heesch and Kamel Jabbari and Claire Jubin and Hiroshi Kawai and Kei Kimura and Bernard Kloareg and Kuepper, {Frithjof C.} and Daniel Lang and {Le Bail}, Aude and Catherine Leblanc and Patrice Lerouge and Martin Lohr and Lopez, {Pascal J.} and Cindy Martens and Florian Maumus and Gurvan Michel and Diego Miranda-Saavedra and Julia Morales and Herve Moreau and Taizo Motomura and Chikako Nagasato and Napoli, {Carolyn A.} and Nelson, {David R.} and Pi Nyvall-Collen and Peters, {Akira F.} and Cyril Pommier and Philippe Potin and Julie Poulain and Hadi Quesneville and Betsy Read and Rensing, {Stefan A.} and Andres Ritter and Sylvie Rousvoal and Manoj Samanta and Gaelle Samson and Schroeder, {Declan C.} and Beatrice Segurens and Martina Strittmatter and Thierry Tonon and Tregear, {James W.} and Klaus Valentin and {von Dassow}, Peter and Takahiro Yamagishi and {Van de Peer}, Yves and Patrick Wincker",
year = "2010",
month = "6",
day = "3",
doi = "10.1038/nature09016",
language = "English",
volume = "465",
pages = "617--621",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7298",

}

TY - JOUR

T1 - The Ectocarpus genome and the independent evolution of multicellularity in brown algae

AU - Cock, J. Mark

AU - Sterck, Lieven

AU - Rouze, Pierre

AU - Scornet, Delphine

AU - Allen, Andrew E.

AU - Amoutzias, Grigoris

AU - Anthouard, Veronique

AU - Artiguenave, Francois

AU - Aury, Jean-Marc

AU - Badger, Jonathan H.

AU - Beszteri, Bank

AU - Billiau, Kenny

AU - Bonnet, Eric

AU - Bothwell, John H.

AU - Bowler, Chris

AU - Boyen, Catherine

AU - Brownlee, Colin

AU - Carrano, Carl J.

AU - Charrier, Benedicte

AU - Cho, Ga Youn

AU - Coelho, Susana M.

AU - Collen, Jonas

AU - Corre, Erwan

AU - Da Silva, Corinne

AU - Delage, Ludovic

AU - Delaroque, Nicolas

AU - Dittami, Simon M.

AU - Doulbeau, Sylvie

AU - Elias, Marek

AU - Farnham, Garry

AU - Gachon, Claire M. M.

AU - Gschloessl, Bernhard

AU - Heesch, Svenja

AU - Jabbari, Kamel

AU - Jubin, Claire

AU - Kawai, Hiroshi

AU - Kimura, Kei

AU - Kloareg, Bernard

AU - Kuepper, Frithjof C.

AU - Lang, Daniel

AU - Le Bail, Aude

AU - Leblanc, Catherine

AU - Lerouge, Patrice

AU - Lohr, Martin

AU - Lopez, Pascal J.

AU - Martens, Cindy

AU - Maumus, Florian

AU - Michel, Gurvan

AU - Miranda-Saavedra, Diego

AU - Morales, Julia

AU - Moreau, Herve

AU - Motomura, Taizo

AU - Nagasato, Chikako

AU - Napoli, Carolyn A.

AU - Nelson, David R.

AU - Nyvall-Collen, Pi

AU - Peters, Akira F.

AU - Pommier, Cyril

AU - Potin, Philippe

AU - Poulain, Julie

AU - Quesneville, Hadi

AU - Read, Betsy

AU - Rensing, Stefan A.

AU - Ritter, Andres

AU - Rousvoal, Sylvie

AU - Samanta, Manoj

AU - Samson, Gaelle

AU - Schroeder, Declan C.

AU - Segurens, Beatrice

AU - Strittmatter, Martina

AU - Tonon, Thierry

AU - Tregear, James W.

AU - Valentin, Klaus

AU - von Dassow, Peter

AU - Yamagishi, Takahiro

AU - Van de Peer, Yves

AU - Wincker, Patrick

PY - 2010/6/3

Y1 - 2010/6/3

N2 - Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

AB - Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

KW - evolution

KW - developmental biology

U2 - 10.1038/nature09016

DO - 10.1038/nature09016

M3 - Article

VL - 465

SP - 617

EP - 621

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7298

ER -