The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms

Alexandra Pontefract* (Corresponding Author), Gordon R. Osinski, Paula Lindgren, John Parnell, Charles S. Cockell, Gordon Southam

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Meteorite impacts, one of the most ubiquitous processes in the solar system, have the ability to destroy as well as create habitats for life. The impact process can increase the translucency and porosity of the target substrate, as well as mobilize biologically relevant elements within the substrate. For endolithic organisms, this process has important implications, especially in extreme environments where they are forced to seek refuge in the interior of rocks. Here, we show that unshocked target rocks and rocks that have experienced pressures up to about 80GPa from the Haughton impact structure, Devon Island, Canada, possess a small, but discernible change in bulk chemistry within the major oxide analysis. However, changes in the distribution of elements did occur with increasing shock level for both the sedimentary and crystalline target. Both the crystalline and sedimentary target rocks contain significant amounts of glasses at higher shock levels (up to about 95% by volume), which would improve the availability of these elements to potential microbial endoliths as glasses are more easily dissolved by organic acids. The implication that impact events do not impoverish their capacity to serve as a "substrate" through volatilization is important with respect to analogous impact structures on Mars. After the deleterious effects of the direct meteorite impact, any microorganisms on Mars would have benefited from the input of heat, the mobilization of a possible frozen groundwater system, as well as increased translucency, porosity, and trace nutrient availability of the target substrate.

Original languageEnglish
Pages (from-to)1681-1691
Number of pages11
JournalMeteoritics and Planetary Science
Volume47
Issue number10
DOIs
Publication statusPublished - 1 Oct 2012

Fingerprint

Dive into the research topics of 'The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms'. Together they form a unique fingerprint.

Cite this