The relationship between oxide-ion conductivity and cation vacancy order in the hybrid hexagonal perovskite Ba3VWO8.5

Asma Gilane, Sacha Fop, Falak Sher, Ronald I. Smith, Abbie C. McLaughlin* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)
1 Downloads (Pure)

Abstract

Significant oxide ionic conductivity has recently been reported in cation-deficient hexagonal perovskite Ba3M’M’’O8.5 derivatives (M’ = Nb; M’’ = Mo, W), with disordered hybrid 9R-palmierite average structures. Here, we present a study of the crystal structure and electrical properties of the related compound Ba3VWO8.5. Electrical characterization demonstrates that Ba3VWO8.5 is also an oxide ion conductor with a bulk conductivity of 2.0 × 10-3 S cm-1 in air at 900 °C, thus revealing that it is possible to obtain oxide ion conducting Ba3M’M’’O8.5 materials with a variety of different M’M’’ combinations. Whilst Ba3NbMoO8.5 and Ba3NbWO8.5 present a random distribution of cationic vacancies, X-ray and neutron diffraction experiments demonstrate that the cationic vacancies are ordered on the M2 sites in Ba3VWO8.5, resulting in a structure where M1Ox palmierite-like layers are separated by empty octahedral cavities. Bond-valence site energy (BVSE) analysis on the different phases reveals that ordering of the cationic vacancies hinders long-range oxygen diffusivity parallel to the c-axis in Ba3VWO8.5 explaining the reduced ionic conductivity of this compound. These results suggest that, together with the dominant 2-dimensional conduction pathway along the palmierite-like layers, additional diffusion routes parallel to the c-axis provide a relevant contribution to the conductivity of these Ba3M’M’’O8.5 systems by creation of a complex 3-dimensional ionic percolation network, the topology of which depends on the particular arrangement of cation and anion vacancies.
Original languageEnglish
Pages (from-to)16506-16514
Number of pages9
JournalJournal of Materials Chemistry A
Volume8
Issue number32
Early online date22 Jul 2020
DOIs
Publication statusPublished - 28 Aug 2020

Keywords

  • CRYSTAL-STRUCTURE
  • TEMPERATURE
  • TRANSITION
  • CONDUCTORS
  • TRANSPORT
  • COORDINATION
  • DISTORTIONS
  • DIFFUSION
  • MIGRATION
  • STACKING

Fingerprint

Dive into the research topics of 'The relationship between oxide-ion conductivity and cation vacancy order in the hybrid hexagonal perovskite Ba3VWO8.5'. Together they form a unique fingerprint.

Cite this