The ruminal microbiome associated with methane emissions from ruminant livestock

Ilma Tapio, Timothy John Snelling, Francesco Strozzi, R. John Wallace

Research output: Contribution to journalReview article

41 Citations (Scopus)
8 Downloads (Pure)

Abstract

Methane emissions from ruminant livestock contribute significantly to the large environmental footprint of agriculture. The rumen is the principal source of methane, and certain features of the microbiome are associated with low/high methane phenotypes. Despite their primary role in methanogenesis, the abundance of archaea has only a weak correlation with methane emissions from individual animals. The composition of the archaeal community appears to have a stronger effect, with animals harbouring the Methanobrevibacter gottschalkii clade tending to be associated with greater methane emissions. Ciliate protozoa produce abundant H2, the main substrate for methanogenesis in the rumen, and their removal (defaunation) results in an average 11% lower methane emissions in vivo, but the results are not consistent. Different protozoal genera seem to result in greater methane emissions, though community types (A, AB, B and O) did not differ. Within the bacteria, three different ‘ruminotypes’ have been identified, two of which predispose animals to have lower methane emissions. The two low-methane ruminotypes are generally characterized by less abundant H2-producing bacteria. A lower abundance of Proteobacteria and differences in certain Bacteroidetes and anaerobic fungi seem to be associated with high methane emissions. Rumen anaerobic fungi produce abundant H2 and formate, and their abundance generally corresponds to the level of methane emissions. Thus, microbiome analysis is consistent with known pathways for H2 production and methanogenesis, but not yet in a predictive manner. The production and utilisation of formate by the ruminal microbiota is poorly understood and may be a source of variability between animals.
Original languageEnglish
Article number7
JournalJournal of Animal Science and Biotechnology
Volume8
DOIs
Publication statusPublished - 19 Jan 2017

Fingerprint

ruminant
livestock
methane
methanogenesis
animal
fungus
bacterium
ciliate
footprint
phenotype
agriculture
substrate

Keywords

  • Archaea
  • Methane
  • Microbiome
  • Rumen

Cite this

The ruminal microbiome associated with methane emissions from ruminant livestock. / Tapio, Ilma; Snelling, Timothy John; Strozzi, Francesco; Wallace, R. John.

In: Journal of Animal Science and Biotechnology, Vol. 8, 7, 19.01.2017.

Research output: Contribution to journalReview article

@article{e235b20980d042879c0f003f4c80c2b6,
title = "The ruminal microbiome associated with methane emissions from ruminant livestock",
abstract = "Methane emissions from ruminant livestock contribute significantly to the large environmental footprint of agriculture. The rumen is the principal source of methane, and certain features of the microbiome are associated with low/high methane phenotypes. Despite their primary role in methanogenesis, the abundance of archaea has only a weak correlation with methane emissions from individual animals. The composition of the archaeal community appears to have a stronger effect, with animals harbouring the Methanobrevibacter gottschalkii clade tending to be associated with greater methane emissions. Ciliate protozoa produce abundant H2, the main substrate for methanogenesis in the rumen, and their removal (defaunation) results in an average 11{\%} lower methane emissions in vivo, but the results are not consistent. Different protozoal genera seem to result in greater methane emissions, though community types (A, AB, B and O) did not differ. Within the bacteria, three different ‘ruminotypes’ have been identified, two of which predispose animals to have lower methane emissions. The two low-methane ruminotypes are generally characterized by less abundant H2-producing bacteria. A lower abundance of Proteobacteria and differences in certain Bacteroidetes and anaerobic fungi seem to be associated with high methane emissions. Rumen anaerobic fungi produce abundant H2 and formate, and their abundance generally corresponds to the level of methane emissions. Thus, microbiome analysis is consistent with known pathways for H2 production and methanogenesis, but not yet in a predictive manner. The production and utilisation of formate by the ruminal microbiota is poorly understood and may be a source of variability between animals.",
keywords = "Archaea , Methane, Microbiome, Rumen",
author = "Ilma Tapio and Snelling, {Timothy John} and Francesco Strozzi and Wallace, {R. John}",
note = "The Rowett Institute is funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. This study was financially supported by Ruminomics (project no. 289319 of EC 7th Framework Programme: Food, Agriculture, Fisheries and Biotechnology).",
year = "2017",
month = "1",
day = "19",
doi = "10.1186/s40104-017-0141-0",
language = "English",
volume = "8",
journal = "Journal of Animal Science and Biotechnology",
publisher = "BioMed Central",

}

TY - JOUR

T1 - The ruminal microbiome associated with methane emissions from ruminant livestock

AU - Tapio, Ilma

AU - Snelling, Timothy John

AU - Strozzi, Francesco

AU - Wallace, R. John

N1 - The Rowett Institute is funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. This study was financially supported by Ruminomics (project no. 289319 of EC 7th Framework Programme: Food, Agriculture, Fisheries and Biotechnology).

PY - 2017/1/19

Y1 - 2017/1/19

N2 - Methane emissions from ruminant livestock contribute significantly to the large environmental footprint of agriculture. The rumen is the principal source of methane, and certain features of the microbiome are associated with low/high methane phenotypes. Despite their primary role in methanogenesis, the abundance of archaea has only a weak correlation with methane emissions from individual animals. The composition of the archaeal community appears to have a stronger effect, with animals harbouring the Methanobrevibacter gottschalkii clade tending to be associated with greater methane emissions. Ciliate protozoa produce abundant H2, the main substrate for methanogenesis in the rumen, and their removal (defaunation) results in an average 11% lower methane emissions in vivo, but the results are not consistent. Different protozoal genera seem to result in greater methane emissions, though community types (A, AB, B and O) did not differ. Within the bacteria, three different ‘ruminotypes’ have been identified, two of which predispose animals to have lower methane emissions. The two low-methane ruminotypes are generally characterized by less abundant H2-producing bacteria. A lower abundance of Proteobacteria and differences in certain Bacteroidetes and anaerobic fungi seem to be associated with high methane emissions. Rumen anaerobic fungi produce abundant H2 and formate, and their abundance generally corresponds to the level of methane emissions. Thus, microbiome analysis is consistent with known pathways for H2 production and methanogenesis, but not yet in a predictive manner. The production and utilisation of formate by the ruminal microbiota is poorly understood and may be a source of variability between animals.

AB - Methane emissions from ruminant livestock contribute significantly to the large environmental footprint of agriculture. The rumen is the principal source of methane, and certain features of the microbiome are associated with low/high methane phenotypes. Despite their primary role in methanogenesis, the abundance of archaea has only a weak correlation with methane emissions from individual animals. The composition of the archaeal community appears to have a stronger effect, with animals harbouring the Methanobrevibacter gottschalkii clade tending to be associated with greater methane emissions. Ciliate protozoa produce abundant H2, the main substrate for methanogenesis in the rumen, and their removal (defaunation) results in an average 11% lower methane emissions in vivo, but the results are not consistent. Different protozoal genera seem to result in greater methane emissions, though community types (A, AB, B and O) did not differ. Within the bacteria, three different ‘ruminotypes’ have been identified, two of which predispose animals to have lower methane emissions. The two low-methane ruminotypes are generally characterized by less abundant H2-producing bacteria. A lower abundance of Proteobacteria and differences in certain Bacteroidetes and anaerobic fungi seem to be associated with high methane emissions. Rumen anaerobic fungi produce abundant H2 and formate, and their abundance generally corresponds to the level of methane emissions. Thus, microbiome analysis is consistent with known pathways for H2 production and methanogenesis, but not yet in a predictive manner. The production and utilisation of formate by the ruminal microbiota is poorly understood and may be a source of variability between animals.

KW - Archaea

KW - Methane

KW - Microbiome

KW - Rumen

U2 - 10.1186/s40104-017-0141-0

DO - 10.1186/s40104-017-0141-0

M3 - Review article

VL - 8

JO - Journal of Animal Science and Biotechnology

JF - Journal of Animal Science and Biotechnology

M1 - 7

ER -