The Sources of Dual-task Costs in Multisensory Working Memory Tasks

Tobias Katus, Martin Eimer

Research output: Contribution to journalArticle

Abstract

We investigated the sources of dual-task costs arising in multisensory working memory (WM) tasks, where stimuli from different modalities have to be simultaneously maintained. Performance decrements relative to unimodal single-task baselines have been attributed to a modality-unspecific central WM store, but such costs could also reflect increased demands on central executive processes involved in dual-task coordination. To compare these hypotheses, we asked participants to maintain two, three, or four visual items. Unimodal trials, where only this visual task was performed, and bimodal trials, where a concurrent tactile WM task required the additional maintenance of two tactile items, were randomly intermixed. We measured the visual and tactile contralateral delay activity (CDA/tCDA components) as markers of WM maintenance in visual and somatosensory areas. There were reliable dual-task costs, as visual CDA components were reduced in size and visual WM accuracy was impaired on bimodal relative to unimodal trials. However, these costs did not depend on visual load, which caused identical CDA modulations in unimodal and bimodal trials, suggesting that memorizing tactile items did not reduce the number of visual items that could be maintained. Visual load did not also affect tCDA amplitudes. These findings indicate that bimodal dual-task costs do not result from a competition between multisensory items for shared storage capacity. Instead, these costs reflect generic limitations of executive control mechanisms that coordinate multiple cognitive processes in dual tasks. Our results support hierarchical models of WM, where distributed maintenance processes with modality-specific capacity limitations are controlled by a central executive mechanism.

Original languageEnglish
Pages (from-to)175-185
Number of pages11
JournalJournal of Cognitive Neuroscience
Volume31
Issue number2
Early online date27 Dec 2018
DOIs
Publication statusPublished - Feb 2019

Fingerprint

Short-Term Memory
Touch
Costs and Cost Analysis
Maintenance
Executive Function

Keywords

  • attention
  • working memory capacity
  • multisensory
  • EEG
  • touch
  • vision

Cite this

The Sources of Dual-task Costs in Multisensory Working Memory Tasks. / Katus, Tobias; Eimer, Martin.

In: Journal of Cognitive Neuroscience, Vol. 31, No. 2, 02.2019, p. 175-185.

Research output: Contribution to journalArticle

@article{345c5ab628b34392bb9c64cf60b619ce,
title = "The Sources of Dual-task Costs in Multisensory Working Memory Tasks",
abstract = "We investigated the sources of dual-task costs arising in multisensory working memory (WM) tasks, where stimuli from different modalities have to be simultaneously maintained. Performance decrements relative to unimodal single-task baselines have been attributed to a modality-unspecific central WM store, but such costs could also reflect increased demands on central executive processes involved in dual-task coordination. To compare these hypotheses, we asked participants to maintain two, three, or four visual items. Unimodal trials, where only this visual task was performed, and bimodal trials, where a concurrent tactile WM task required the additional maintenance of two tactile items, were randomly intermixed. We measured the visual and tactile contralateral delay activity (CDA/tCDA components) as markers of WM maintenance in visual and somatosensory areas. There were reliable dual-task costs, as visual CDA components were reduced in size and visual WM accuracy was impaired on bimodal relative to unimodal trials. However, these costs did not depend on visual load, which caused identical CDA modulations in unimodal and bimodal trials, suggesting that memorizing tactile items did not reduce the number of visual items that could be maintained. Visual load did not also affect tCDA amplitudes. These findings indicate that bimodal dual-task costs do not result from a competition between multisensory items for shared storage capacity. Instead, these costs reflect generic limitations of executive control mechanisms that coordinate multiple cognitive processes in dual tasks. Our results support hierarchical models of WM, where distributed maintenance processes with modality-specific capacity limitations are controlled by a central executive mechanism.",
keywords = "attention, working memory capacity, multisensory, EEG, touch, vision",
author = "Tobias Katus and Martin Eimer",
year = "2019",
month = "2",
doi = "10.1162/jocn_a_01348",
language = "English",
volume = "31",
pages = "175--185",
journal = "Journal of Cognitive Neuroscience",
issn = "0898-929X",
publisher = "MIT Press Journals",
number = "2",

}

TY - JOUR

T1 - The Sources of Dual-task Costs in Multisensory Working Memory Tasks

AU - Katus, Tobias

AU - Eimer, Martin

PY - 2019/2

Y1 - 2019/2

N2 - We investigated the sources of dual-task costs arising in multisensory working memory (WM) tasks, where stimuli from different modalities have to be simultaneously maintained. Performance decrements relative to unimodal single-task baselines have been attributed to a modality-unspecific central WM store, but such costs could also reflect increased demands on central executive processes involved in dual-task coordination. To compare these hypotheses, we asked participants to maintain two, three, or four visual items. Unimodal trials, where only this visual task was performed, and bimodal trials, where a concurrent tactile WM task required the additional maintenance of two tactile items, were randomly intermixed. We measured the visual and tactile contralateral delay activity (CDA/tCDA components) as markers of WM maintenance in visual and somatosensory areas. There were reliable dual-task costs, as visual CDA components were reduced in size and visual WM accuracy was impaired on bimodal relative to unimodal trials. However, these costs did not depend on visual load, which caused identical CDA modulations in unimodal and bimodal trials, suggesting that memorizing tactile items did not reduce the number of visual items that could be maintained. Visual load did not also affect tCDA amplitudes. These findings indicate that bimodal dual-task costs do not result from a competition between multisensory items for shared storage capacity. Instead, these costs reflect generic limitations of executive control mechanisms that coordinate multiple cognitive processes in dual tasks. Our results support hierarchical models of WM, where distributed maintenance processes with modality-specific capacity limitations are controlled by a central executive mechanism.

AB - We investigated the sources of dual-task costs arising in multisensory working memory (WM) tasks, where stimuli from different modalities have to be simultaneously maintained. Performance decrements relative to unimodal single-task baselines have been attributed to a modality-unspecific central WM store, but such costs could also reflect increased demands on central executive processes involved in dual-task coordination. To compare these hypotheses, we asked participants to maintain two, three, or four visual items. Unimodal trials, where only this visual task was performed, and bimodal trials, where a concurrent tactile WM task required the additional maintenance of two tactile items, were randomly intermixed. We measured the visual and tactile contralateral delay activity (CDA/tCDA components) as markers of WM maintenance in visual and somatosensory areas. There were reliable dual-task costs, as visual CDA components were reduced in size and visual WM accuracy was impaired on bimodal relative to unimodal trials. However, these costs did not depend on visual load, which caused identical CDA modulations in unimodal and bimodal trials, suggesting that memorizing tactile items did not reduce the number of visual items that could be maintained. Visual load did not also affect tCDA amplitudes. These findings indicate that bimodal dual-task costs do not result from a competition between multisensory items for shared storage capacity. Instead, these costs reflect generic limitations of executive control mechanisms that coordinate multiple cognitive processes in dual tasks. Our results support hierarchical models of WM, where distributed maintenance processes with modality-specific capacity limitations are controlled by a central executive mechanism.

KW - attention

KW - working memory capacity

KW - multisensory

KW - EEG

KW - touch

KW - vision

UR - http://www.mendeley.com/research/sources-dualtask-costs-multisensory-working-memory-tasks

U2 - 10.1162/jocn_a_01348

DO - 10.1162/jocn_a_01348

M3 - Article

VL - 31

SP - 175

EP - 185

JO - Journal of Cognitive Neuroscience

JF - Journal of Cognitive Neuroscience

SN - 0898-929X

IS - 2

ER -