TY - JOUR
T1 - The transcriptomic signature of physiological trade-offs caused by larval overcrowding in Drosophila melanogaster
AU - Morimoto, Juliano
AU - Wenzel, Marius
AU - Derous, Davina
AU - Henry, Youn
AU - Colinet, Hervé
N1 - Open Access via the Wiley Open Access Agreement
Biotechnology and Biological Sciences Research Council (GrantNumber(s): BB/V015249/1; Grant recipient(s): Juliano Morimoto)
Royal Society (GrantNumber(s): RGS\R2\202220; Grant recipient(s): Juliano Morimoto)
French National Research Agency (GrantNumber(s): ANR-20-CE02-0011-01; Grant recipient(s): hervé colinet)
PY - 2022/10/17
Y1 - 2022/10/17
N2 - Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways and physiological trade-offs underpinning these ecological processes are poorly characterised. We reared Drosophila melanogaster at three egg densities (5, 60 and 300 eggs/ml) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs) including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, Taurine, Toll/Imd signalling and P450 xenobiotics metabolism pathways. Overall, our findings show that larval overcrowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
AB - Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways and physiological trade-offs underpinning these ecological processes are poorly characterised. We reared Drosophila melanogaster at three egg densities (5, 60 and 300 eggs/ml) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs) including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, Taurine, Toll/Imd signalling and P450 xenobiotics metabolism pathways. Overall, our findings show that larval overcrowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
KW - intrasspecific competition
KW - larval crowding
KW - life-history
KW - trade-offs
KW - Transcriptomics
UR - http://www.scopus.com/inward/record.url?scp=85139911837&partnerID=8YFLogxK
U2 - 10.1101/2022.01.07.475433
DO - 10.1101/2022.01.07.475433
M3 - Article
JO - Insect Science
JF - Insect Science
SN - 1744-7917
ER -