Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics

Guanglei Wang, Ying-Cheng Lai, Celso Grebogi

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)
9 Downloads (Pure)

Abstract

Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular-there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.
Original languageEnglish
Article number35381
Pages (from-to)1-13
Number of pages13
JournalScientific Reports
Volume6
DOIs
Publication statusPublished - 17 Oct 2016

Bibliographical note

We thank Dr. L. Huang and Mr. H.-Y. Xu for helpful discussions. This work was supported by AFOSR under Grant No. FA9550-15-1-0151 and by ONR under Grant No. N00014-15-1-2405.

Keywords

  • quantum optics
  • quantum simulation

Fingerprint

Dive into the research topics of 'Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics'. Together they form a unique fingerprint.

Cite this