Treatment of SW620 cells with Tomudex and Oxaliplatin induces changes In 2-Deoxy-D-glucose incorporation associated with modifications in glucose transport

Timothy Andrew Davies Smith, Nicolas Maisey, Jenny Titley, Elizabeth Jackson, Martin Leach, Sabrina Ronen

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Many studies suggest that changes in the uptake of the glucose analog FDG after therapy, compared with pretreatment uptake, predicts tumor response to therapy. However, clinical interpretation is compromised by a limited understanding of the effect of therapy on FDG and 2-deoxy-D-glucose (DG) uptake at the tumor cell level. Methods: Uptake of 2-deoxy-D-[1-3H]glucose (3H-DG) by SW620 colonic tumor cells was measured before and 8, 16, 24, and 48 h after treatment with the novel platinum drug oxaliplatin and the novel thymidylate synthase inhibitor Tomudex. Glucose transport was determined by measuring the initial rate of uptake of the nearly nonmetabolized glucose analog 3-O-methyl-D-[1-3H]glucose (3H-OMG). The effect of these drugs on cell cycle kinetics was determined using flow cytometry. Results: Treatment of SW620 cells with oxaliplatin was found to decrease uptake of 3H-DG after up to 24 h, but uptake returned to control levels after longer treatment. The initial decrease in 3H-DG incorporation was associated with a lower rate of glucose transport. Treatment of cells with Tomudex induced an increase in 3H-DG uptake that depended on treatment duration. Both glucose transport and the volume of distribution of 3H-OMG were higher in Tomudex-treated cells than in control cells. Flow cytometry showed that oxaliplatin induced a G2 and M arrest, whereas a buildup of cells in the S phase was associated with Tomudex treatment. Both treatments induced apoptosis in SW620 cells. Conclusion: Changes in uptake of DG by SW620 colonic tumor cells responding to therapy is specific to the drug type. Modulation of glucose transport was associated with changes in 3H-DG uptake.
Original languageEnglish
Pages (from-to)1753-1759
Number of pages7
JournalJournal of Nuclear Medicine
Volume41
Issue number10
Publication statusPublished - 1 Jan 2000

Fingerprint

oxaliplatin
Deoxyglucose
Glucose
raltitrexed
Neoplasms
Flow Cytometry

Cite this

Treatment of SW620 cells with Tomudex and Oxaliplatin induces changes In 2-Deoxy-D-glucose incorporation associated with modifications in glucose transport. / Smith, Timothy Andrew Davies; Maisey, Nicolas; Titley, Jenny; Jackson, Elizabeth; Leach, Martin; Ronen, Sabrina.

In: Journal of Nuclear Medicine, Vol. 41, No. 10, 01.01.2000, p. 1753-1759.

Research output: Contribution to journalArticle

Smith, Timothy Andrew Davies ; Maisey, Nicolas ; Titley, Jenny ; Jackson, Elizabeth ; Leach, Martin ; Ronen, Sabrina. / Treatment of SW620 cells with Tomudex and Oxaliplatin induces changes In 2-Deoxy-D-glucose incorporation associated with modifications in glucose transport. In: Journal of Nuclear Medicine. 2000 ; Vol. 41, No. 10. pp. 1753-1759.
@article{d688f1ba8dbd4116a5b7281059017410,
title = "Treatment of SW620 cells with Tomudex and Oxaliplatin induces changes In 2-Deoxy-D-glucose incorporation associated with modifications in glucose transport",
abstract = "Many studies suggest that changes in the uptake of the glucose analog FDG after therapy, compared with pretreatment uptake, predicts tumor response to therapy. However, clinical interpretation is compromised by a limited understanding of the effect of therapy on FDG and 2-deoxy-D-glucose (DG) uptake at the tumor cell level. Methods: Uptake of 2-deoxy-D-[1-3H]glucose (3H-DG) by SW620 colonic tumor cells was measured before and 8, 16, 24, and 48 h after treatment with the novel platinum drug oxaliplatin and the novel thymidylate synthase inhibitor Tomudex. Glucose transport was determined by measuring the initial rate of uptake of the nearly nonmetabolized glucose analog 3-O-methyl-D-[1-3H]glucose (3H-OMG). The effect of these drugs on cell cycle kinetics was determined using flow cytometry. Results: Treatment of SW620 cells with oxaliplatin was found to decrease uptake of 3H-DG after up to 24 h, but uptake returned to control levels after longer treatment. The initial decrease in 3H-DG incorporation was associated with a lower rate of glucose transport. Treatment of cells with Tomudex induced an increase in 3H-DG uptake that depended on treatment duration. Both glucose transport and the volume of distribution of 3H-OMG were higher in Tomudex-treated cells than in control cells. Flow cytometry showed that oxaliplatin induced a G2 and M arrest, whereas a buildup of cells in the S phase was associated with Tomudex treatment. Both treatments induced apoptosis in SW620 cells. Conclusion: Changes in uptake of DG by SW620 colonic tumor cells responding to therapy is specific to the drug type. Modulation of glucose transport was associated with changes in 3H-DG uptake.",
author = "Smith, {Timothy Andrew Davies} and Nicolas Maisey and Jenny Titley and Elizabeth Jackson and Martin Leach and Sabrina Ronen",
year = "2000",
month = "1",
day = "1",
language = "English",
volume = "41",
pages = "1753--1759",
journal = "Journal of Nuclear Medicine",
issn = "0161-5505",
publisher = "Society of Nuclear Medicine Inc.",
number = "10",

}

TY - JOUR

T1 - Treatment of SW620 cells with Tomudex and Oxaliplatin induces changes In 2-Deoxy-D-glucose incorporation associated with modifications in glucose transport

AU - Smith, Timothy Andrew Davies

AU - Maisey, Nicolas

AU - Titley, Jenny

AU - Jackson, Elizabeth

AU - Leach, Martin

AU - Ronen, Sabrina

PY - 2000/1/1

Y1 - 2000/1/1

N2 - Many studies suggest that changes in the uptake of the glucose analog FDG after therapy, compared with pretreatment uptake, predicts tumor response to therapy. However, clinical interpretation is compromised by a limited understanding of the effect of therapy on FDG and 2-deoxy-D-glucose (DG) uptake at the tumor cell level. Methods: Uptake of 2-deoxy-D-[1-3H]glucose (3H-DG) by SW620 colonic tumor cells was measured before and 8, 16, 24, and 48 h after treatment with the novel platinum drug oxaliplatin and the novel thymidylate synthase inhibitor Tomudex. Glucose transport was determined by measuring the initial rate of uptake of the nearly nonmetabolized glucose analog 3-O-methyl-D-[1-3H]glucose (3H-OMG). The effect of these drugs on cell cycle kinetics was determined using flow cytometry. Results: Treatment of SW620 cells with oxaliplatin was found to decrease uptake of 3H-DG after up to 24 h, but uptake returned to control levels after longer treatment. The initial decrease in 3H-DG incorporation was associated with a lower rate of glucose transport. Treatment of cells with Tomudex induced an increase in 3H-DG uptake that depended on treatment duration. Both glucose transport and the volume of distribution of 3H-OMG were higher in Tomudex-treated cells than in control cells. Flow cytometry showed that oxaliplatin induced a G2 and M arrest, whereas a buildup of cells in the S phase was associated with Tomudex treatment. Both treatments induced apoptosis in SW620 cells. Conclusion: Changes in uptake of DG by SW620 colonic tumor cells responding to therapy is specific to the drug type. Modulation of glucose transport was associated with changes in 3H-DG uptake.

AB - Many studies suggest that changes in the uptake of the glucose analog FDG after therapy, compared with pretreatment uptake, predicts tumor response to therapy. However, clinical interpretation is compromised by a limited understanding of the effect of therapy on FDG and 2-deoxy-D-glucose (DG) uptake at the tumor cell level. Methods: Uptake of 2-deoxy-D-[1-3H]glucose (3H-DG) by SW620 colonic tumor cells was measured before and 8, 16, 24, and 48 h after treatment with the novel platinum drug oxaliplatin and the novel thymidylate synthase inhibitor Tomudex. Glucose transport was determined by measuring the initial rate of uptake of the nearly nonmetabolized glucose analog 3-O-methyl-D-[1-3H]glucose (3H-OMG). The effect of these drugs on cell cycle kinetics was determined using flow cytometry. Results: Treatment of SW620 cells with oxaliplatin was found to decrease uptake of 3H-DG after up to 24 h, but uptake returned to control levels after longer treatment. The initial decrease in 3H-DG incorporation was associated with a lower rate of glucose transport. Treatment of cells with Tomudex induced an increase in 3H-DG uptake that depended on treatment duration. Both glucose transport and the volume of distribution of 3H-OMG were higher in Tomudex-treated cells than in control cells. Flow cytometry showed that oxaliplatin induced a G2 and M arrest, whereas a buildup of cells in the S phase was associated with Tomudex treatment. Both treatments induced apoptosis in SW620 cells. Conclusion: Changes in uptake of DG by SW620 colonic tumor cells responding to therapy is specific to the drug type. Modulation of glucose transport was associated with changes in 3H-DG uptake.

M3 - Article

VL - 41

SP - 1753

EP - 1759

JO - Journal of Nuclear Medicine

JF - Journal of Nuclear Medicine

SN - 0161-5505

IS - 10

ER -