Tree loss impacts on ecological connectivity: Developing models for assessment

Roslyn C. Henry* (Corresponding Author), Stephen C.F. Palmer, Kevin Watts, Ruth J. Mitchell, Nick Atkinson, Justin M.J. Travis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
9 Downloads (Pure)

Abstract

Trees along linear features are important landscape features, and their loss threatens ecological connectivity. Until recently, trees outside of woodlands (TOWs) were largely unmapped however; the development of innovation mapping techniques provides opportunities to understand the distribution of such trees and to apply spatially explicit models to address the importance of trees for connectivity. In this study, we demonstrate the utility of models when investigating tree loss and impacts on connectivity. Specifically, we investigated the consequences of tree loss due to the removal of roadside trees, a common management response for diseased or damaged trees, on wider landscape functional connectivity. We simulated the loss of roadside trees within six focal areas of the south east of the UK. We used a spatially explicit individual-based modelling platform, RangeShifter, to model the movement of 81 hypothetical actively dispersing woodland breeding species across these agriculturally fragmented landscapes. We investigated the extent to which removal of trees, from roadsides within the wider landscape, affected the total number of successful dispersers in any given year and the number of breeding woodlands that became isolated through time. On average roadside trees accounted for < 2% of land cover, but removing 60% of them (~ 1.2% of land cover) nevertheless decreased the number of successful dispersers by up to 17%. The impact was greatest when roadside trees represented a greater proportion of canopy cover. The study therefore demonstrates that models such as RangeShifter can provide valuable tools for assessing the consequences of losing trees outside of woodlands.
Original languageEnglish
Pages (from-to)90-99
Number of pages10
JournalEcological Informatics
Volume42
Early online date19 Oct 2017
DOIs
Publication statusPublished - Nov 2017

Bibliographical note

JMJT, RCH and SCFP were funded by NERC (NE/J008001/1). RJM was funded by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS) research program. This project also benefited from funding provided by the Woodland Trust (A13246). KW was supported with funding from the Forestry Commission.

Keywords

  • Connectivity
  • Tree disease
  • Tree mortality
  • Modelling
  • RangeShifter
  • Scattered trees
  • Corridors

Fingerprint

Dive into the research topics of 'Tree loss impacts on ecological connectivity: Developing models for assessment'. Together they form a unique fingerprint.

Cite this