Truth Discovery in Crowdsourced Detection of Spatial Events

Robin Wentao Ouyang, Mani Srivastava, Alice Toniolo, Timothy J. Norman

Research output: Contribution to journalArticle

24 Citations (Scopus)
16 Downloads (Pure)

Abstract

The ubiquity of smartphones has led to the emergence of mobile crowdsourcing tasks such as the detection of spatial events when smartphone users move around in their daily lives. However, the credibility of those detected events can be negatively impacted by unreliable participants with low-quality data. Consequently, a major challenge in mobile crowdsourcing is truth discovery, i.e., to discover true events from diverse and noisy participants’ reports. This problem is uniquely distinct from its online counterpart in that it involves uncertainties in both participants’ mobility and reliability. Decoupling these two types of uncertainties through location tracking will raise severe privacy and energy issues, whereas simply ignoring missing reports or treating them as negative reports will significantly degrade the accuracy of truth discovery. In this paper, we propose two new unsupervised models, i.e., Truth finder for Spatial Events (TSE) and Personalized Truth finder for Spatial Events (PTSE), to tackle this problem. In TSE, we model location popularity, location visit indicators, truths of events, and three-way participant reliability in a unified framework. In PTSE, we further model personal location visit tendencies. These proposed models are capable of effectively handling various types of uncertainties and automatically discovering truths without any supervision or location tracking. Experimental results on both real-world and synthetic datasets demonstrate that our proposed models outperform existing state-of-the-art truth discovery approaches in the mobile crowdsourcing environment.
Original languageEnglish
Pages (from-to)1047-1060
Number of pages14
JournalIEEE Transactions on Knowledge and Data Engineering
Volume28
Issue number4
Early online date3 Dec 2015
DOIs
Publication statusPublished - 1 Apr 2016

Keywords

  • Mobile crowdsourcing
  • truth discovery
  • probabilistic graphical models

Fingerprint Dive into the research topics of 'Truth Discovery in Crowdsourced Detection of Spatial Events'. Together they form a unique fingerprint.

  • Cite this