Two copies of the genes encoding the subunits of putative interleukin (IL)-4/IL-13 receptors, IL-4Rα, IL-13Rα1 and IL-13Rα2, have been identified in rainbow trout (Oncorhynchus mykiss) and have complex patterns of expression and modulation

T. Wang, W. Huang, M.M. Costa, S.A.M. Martin, C.J. Secombes

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.
Original languageEnglish
Pages (from-to)235-253
Number of pages19
JournalImmunogenetics
Volume63
Issue number4
Early online date6 Jan 2011
DOIs
Publication statusPublished - 1 Apr 2011

Fingerprint

Interleukin-13 Receptors
Oncorhynchus mykiss
Interleukins
Interleukin-4
Genes
Interleukin-13
Interleukin Receptors
Fishes
Zebrafish
Type II Interleukin-4 Receptors
Synteny
T-Lymphocytes
Cell Line
Cytokine Receptors
Trout
Phytohemagglutinins

Keywords

  • Rainbow trout
  • IL-4Rα
  • IL-13Rα1
  • IL-13Rα2
  • Expression
  • Modulation

Cite this

@article{724bab9252b94a8c94c2eb8a5d13a36d,
title = "Two copies of the genes encoding the subunits of putative interleukin (IL)-4/IL-13 receptors, IL-4Rα, IL-13Rα1 and IL-13Rα2, have been identified in rainbow trout (Oncorhynchus mykiss) and have complex patterns of expression and modulation",
abstract = "Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.",
keywords = "Rainbow trout, IL-4Rα, IL-13Rα1, IL-13Rα2, Expression , Modulation",
author = "T. Wang and W. Huang and M.M. Costa and S.A.M. Martin and C.J. Secombes",
note = "Copyright 2011 Elsevier B.V., All rights reserved.",
year = "2011",
month = "4",
day = "1",
doi = "10.1007/s00251-010-0508-2",
language = "English",
volume = "63",
pages = "235--253",
journal = "Immunogenetics",
issn = "0093-7711",
publisher = "Springer Verlag",
number = "4",

}

TY - JOUR

T1 - Two copies of the genes encoding the subunits of putative interleukin (IL)-4/IL-13 receptors, IL-4Rα, IL-13Rα1 and IL-13Rα2, have been identified in rainbow trout (Oncorhynchus mykiss) and have complex patterns of expression and modulation

AU - Wang, T.

AU - Huang, W.

AU - Costa, M.M.

AU - Martin, S.A.M.

AU - Secombes, C.J.

N1 - Copyright 2011 Elsevier B.V., All rights reserved.

PY - 2011/4/1

Y1 - 2011/4/1

N2 - Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.

AB - Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.

KW - Rainbow trout

KW - IL-4Rα

KW - IL-13Rα1

KW - IL-13Rα2

KW - Expression

KW - Modulation

UR - http://www.scopus.com/inward/record.url?scp=79953826691&partnerID=8YFLogxK

U2 - 10.1007/s00251-010-0508-2

DO - 10.1007/s00251-010-0508-2

M3 - Article

VL - 63

SP - 235

EP - 253

JO - Immunogenetics

JF - Immunogenetics

SN - 0093-7711

IS - 4

ER -