Understanding Between-Person Interventions With Time-Intensive Longitudinal Outcome Data: Longitudinal Mediation Analyses

Corina Berli* (Corresponding Author), Jennifer Inauen, Gertraud Stadler, Urte Scholz, Patrick E Shrout

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Abstract Background Mediation analysis is an important tool for understanding the processes through which interventions affect health outcomes over time. Typically the temporal intervals between X, M, and Y are fixed by design, and little focus is given to the temporal dynamics of the processes. Purpose In this article, we aim to highlight the importance of considering the timing of the causal effects of a between-person intervention X, on M and Y, resulting in a deeper understanding of mediation. Methods We provide a framework for examining the impact of a between-person intervention X on M and Y over time when M and Y are measured repeatedly. Five conceptual and analytic steps involve visualizing the effects of the intervention on Y, M, the relationship of M and Y, and the mediating process over time and selecting an appropriate analytic model. Results We demonstrate how these steps can be applied to two empirical examples of health behavior change interventions. We show that the patterns of longitudinal mediation can be fit with versions of longitudinal multilevel structural equation models that represent how the magnitude of direct and indirect effects vary over time. Conclusions We urge researchers and methodologists to pay more attention to temporal dynamics in the causal analysis of interventions.
Original languageEnglish
Pages (from-to)476-488
Number of pages13
JournalAnnals of Behavioral Medicine
Volume55
Issue number5
Early online date5 Sep 2020
DOIs
Publication statusPublished - 6 May 2021

Keywords

  • Longitudinal mediation
  • Multilevel mediation
  • Temporal dynamics
  • Health behavior change interventions
  • Between-person intervention
  • Intensive longitudinal data

Fingerprint

Dive into the research topics of 'Understanding Between-Person Interventions With Time-Intensive Longitudinal Outcome Data: Longitudinal Mediation Analyses'. Together they form a unique fingerprint.

Cite this