Use of stable isotopes to measure de novo synthesis and turnover of amino acid-C and -N in mixed micro-organisms from the sheep rumen in vitro

C. Atasoglu, A. Y. Guliye, R. J. Wallace

Research output: Contribution to journalArticle

22 Citations (Scopus)


Protein synthesis and turnover in ruminal micro-organisms were assessed by stable-isotope methods in order to follow independently the fate of amino acid (AA)-C and -N in different AA. Rumen fluid taken from sheep receiving a grass hay-concentrate diet were strained and incubated in vitro with starch - cellobiose - xylose in the presence of NH3 and 5 g algal protein hydrolysate (APH)/l, in incubations where the labels were (NH3)-N-15, [N-15]APH- or [C-13]APH. Total N-15 incorporation was calculated from separate incubations with (NH3)-N-15 and [N-15]APH, and net N synthesis from the increase in AA in protein-bound material. The large difference between total and net AA synthesis indicated that substantial turnover of microbial protein occurred, averaging 3.5 %/h. Soluble AA-N was incorporated on average more extensively than soluble AA-C (70 v. 50 % respectively, P= 0.001); however, incorporation of individual AA varied. Ninety percent of phenylalanine-C was derived from the C-skeleton of soluble AA, whereas the incorporation of phenylalanine-N was 72 %. In contrast, only 15 % aspartate-C + asparagine-C was incorporated, while 45 % aspartate-N + asparagine-N was incorporated. Deconvolution analysis of mass spectra indicated substantial exchange of carboxyl groups in several AA before incorporation and a condensation of unidentified C-2 and C-4 intermediates during isoleucine metabolism. The present results demonstrate that differential labelling with stable isotopes is a way in which fluxes of AA synthesis and degradation, their biosynthetic routes, and separate fates of AA-C and -N can be determined in a mixed microbial population.

Original languageEnglish
Pages (from-to)253-261
Number of pages9
JournalBritish Journal of Nutrition
Issue number2
Publication statusPublished - Feb 2004


  • amino acids
  • carbon skeletons
  • rumen
  • sheep
  • volatile fatty acids
  • microbial-growth
  • phenylacetic acid
  • ruminal bacteria
  • 2,2'-diaminopimelic acid
  • nitrogen-metabolism
  • anaerobic bacteria
  • invitro
  • peptides
  • protein

Cite this