Using a Lumped Parameter Dynamic Model of a Rock Bolt to Produce Training Data for a Neural Network for Diagnosis of Real Data

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Ground anchorage systems are used extensively throughout the world as supporting devices for civil engineering structures such as bridges and tunnels. The condition monitoring of ground anchorages is a new area of research, with the long term objective being a wholly automated or semi-automated condition monitoring system capable of repeatable and accurate diagnosis of faults and anchorage post-tension levels. The ground anchorage integrity testing (GRANIT) system operates by applying an impulse of known force by means of an impact device that is attached to the tendon of the anchorage. The vibration signals that arise from this impulse are complex in nature and require analysis to be undertaken in order to extract information from the vibrational response signatures that is relevant to the condition of the anchorage. Novel artificial intelligence techniques are used in order to learn the complicated relationship that exists between an anchorage and its response to an impulse. The system has a worldwide patent and is currently licensed commercially.

A lumped parameter dynamic model has been developed which is capable of describing the general frequency relationship with increasing post-tension level as exhibited by the signals captured from real anchorages. The normal procedure with the system is to train a neural network on data that has been taken from an anchorage over a range of post-tension levels. Further data is needed in order to test the neural network. This process can be time consuming, and the lumped parameter dynamic model has the potential of producing data that could be used for training purposes, thereby reducing the amount of time needed on site, and reducing the overall cost of the system's operation.

This paper presents data that has been produced by the lumped parameter dynamic model and compares it with data from a real anchorage. Noise is added to the results produced by the lumped parameter dynamic model in order to match more closely the experimental data. A neural network is trained on the data produced by the model, and the results of diagnosis of real data are presented. Problems are encountered with the diagnosis of the neural network with experimental data, and a new method for the training of the neural network is explored. The improved results of the neural network trained on data produced by the lumped parameter dynamic model to experimental data are shown. It is shown how the results from the lumped parameter dynamic model correspond well to the experimental results.

Original languageEnglish
Pages (from-to)131-142
Number of pages11
JournalMeccanica
Volume38
Issue number1
DOIs
Publication statusPublished - Jan 2003

Keywords

  • neural networks
  • ground anchorages
  • numerical modelling
  • condition monitoring

Cite this

@article{296b2d6abd2e4aa9930cc64e5cea53b8,
title = "Using a Lumped Parameter Dynamic Model of a Rock Bolt to Produce Training Data for a Neural Network for Diagnosis of Real Data",
abstract = "Ground anchorage systems are used extensively throughout the world as supporting devices for civil engineering structures such as bridges and tunnels. The condition monitoring of ground anchorages is a new area of research, with the long term objective being a wholly automated or semi-automated condition monitoring system capable of repeatable and accurate diagnosis of faults and anchorage post-tension levels. The ground anchorage integrity testing (GRANIT) system operates by applying an impulse of known force by means of an impact device that is attached to the tendon of the anchorage. The vibration signals that arise from this impulse are complex in nature and require analysis to be undertaken in order to extract information from the vibrational response signatures that is relevant to the condition of the anchorage. Novel artificial intelligence techniques are used in order to learn the complicated relationship that exists between an anchorage and its response to an impulse. The system has a worldwide patent and is currently licensed commercially.A lumped parameter dynamic model has been developed which is capable of describing the general frequency relationship with increasing post-tension level as exhibited by the signals captured from real anchorages. The normal procedure with the system is to train a neural network on data that has been taken from an anchorage over a range of post-tension levels. Further data is needed in order to test the neural network. This process can be time consuming, and the lumped parameter dynamic model has the potential of producing data that could be used for training purposes, thereby reducing the amount of time needed on site, and reducing the overall cost of the system's operation.This paper presents data that has been produced by the lumped parameter dynamic model and compares it with data from a real anchorage. Noise is added to the results produced by the lumped parameter dynamic model in order to match more closely the experimental data. A neural network is trained on the data produced by the model, and the results of diagnosis of real data are presented. Problems are encountered with the diagnosis of the neural network with experimental data, and a new method for the training of the neural network is explored. The improved results of the neural network trained on data produced by the lumped parameter dynamic model to experimental data are shown. It is shown how the results from the lumped parameter dynamic model correspond well to the experimental results.",
keywords = "neural networks, ground anchorages, numerical modelling, condition monitoring",
author = "Andrew Starkey and Ana Ivanovic and Neilson, {Richard David} and Rodger, {Albert Alexander}",
year = "2003",
month = "1",
doi = "10.1023/A:1022031720855",
language = "English",
volume = "38",
pages = "131--142",
journal = "Meccanica",
issn = "0025-6455",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - Using a Lumped Parameter Dynamic Model of a Rock Bolt to Produce Training Data for a Neural Network for Diagnosis of Real Data

AU - Starkey, Andrew

AU - Ivanovic, Ana

AU - Neilson, Richard David

AU - Rodger, Albert Alexander

PY - 2003/1

Y1 - 2003/1

N2 - Ground anchorage systems are used extensively throughout the world as supporting devices for civil engineering structures such as bridges and tunnels. The condition monitoring of ground anchorages is a new area of research, with the long term objective being a wholly automated or semi-automated condition monitoring system capable of repeatable and accurate diagnosis of faults and anchorage post-tension levels. The ground anchorage integrity testing (GRANIT) system operates by applying an impulse of known force by means of an impact device that is attached to the tendon of the anchorage. The vibration signals that arise from this impulse are complex in nature and require analysis to be undertaken in order to extract information from the vibrational response signatures that is relevant to the condition of the anchorage. Novel artificial intelligence techniques are used in order to learn the complicated relationship that exists between an anchorage and its response to an impulse. The system has a worldwide patent and is currently licensed commercially.A lumped parameter dynamic model has been developed which is capable of describing the general frequency relationship with increasing post-tension level as exhibited by the signals captured from real anchorages. The normal procedure with the system is to train a neural network on data that has been taken from an anchorage over a range of post-tension levels. Further data is needed in order to test the neural network. This process can be time consuming, and the lumped parameter dynamic model has the potential of producing data that could be used for training purposes, thereby reducing the amount of time needed on site, and reducing the overall cost of the system's operation.This paper presents data that has been produced by the lumped parameter dynamic model and compares it with data from a real anchorage. Noise is added to the results produced by the lumped parameter dynamic model in order to match more closely the experimental data. A neural network is trained on the data produced by the model, and the results of diagnosis of real data are presented. Problems are encountered with the diagnosis of the neural network with experimental data, and a new method for the training of the neural network is explored. The improved results of the neural network trained on data produced by the lumped parameter dynamic model to experimental data are shown. It is shown how the results from the lumped parameter dynamic model correspond well to the experimental results.

AB - Ground anchorage systems are used extensively throughout the world as supporting devices for civil engineering structures such as bridges and tunnels. The condition monitoring of ground anchorages is a new area of research, with the long term objective being a wholly automated or semi-automated condition monitoring system capable of repeatable and accurate diagnosis of faults and anchorage post-tension levels. The ground anchorage integrity testing (GRANIT) system operates by applying an impulse of known force by means of an impact device that is attached to the tendon of the anchorage. The vibration signals that arise from this impulse are complex in nature and require analysis to be undertaken in order to extract information from the vibrational response signatures that is relevant to the condition of the anchorage. Novel artificial intelligence techniques are used in order to learn the complicated relationship that exists between an anchorage and its response to an impulse. The system has a worldwide patent and is currently licensed commercially.A lumped parameter dynamic model has been developed which is capable of describing the general frequency relationship with increasing post-tension level as exhibited by the signals captured from real anchorages. The normal procedure with the system is to train a neural network on data that has been taken from an anchorage over a range of post-tension levels. Further data is needed in order to test the neural network. This process can be time consuming, and the lumped parameter dynamic model has the potential of producing data that could be used for training purposes, thereby reducing the amount of time needed on site, and reducing the overall cost of the system's operation.This paper presents data that has been produced by the lumped parameter dynamic model and compares it with data from a real anchorage. Noise is added to the results produced by the lumped parameter dynamic model in order to match more closely the experimental data. A neural network is trained on the data produced by the model, and the results of diagnosis of real data are presented. Problems are encountered with the diagnosis of the neural network with experimental data, and a new method for the training of the neural network is explored. The improved results of the neural network trained on data produced by the lumped parameter dynamic model to experimental data are shown. It is shown how the results from the lumped parameter dynamic model correspond well to the experimental results.

KW - neural networks

KW - ground anchorages

KW - numerical modelling

KW - condition monitoring

U2 - 10.1023/A:1022031720855

DO - 10.1023/A:1022031720855

M3 - Article

VL - 38

SP - 131

EP - 142

JO - Meccanica

JF - Meccanica

SN - 0025-6455

IS - 1

ER -