Abstract
Ground anchorage systems are used extensively throughout the world as supporting devices for civil engineering structures such as bridges and tunnels. The condition monitoring of ground anchorages is a new area of research, with the long term objective being a wholly automated or semi-automated condition monitoring system capable of repeatable and accurate diagnosis of faults and anchorage post-tension levels. The ground anchorage integrity testing (GRANIT) system operates by applying an impulse of known force by means of an impact device that is attached to the tendon of the anchorage. The vibration signals that arise from this impulse are complex in nature and require analysis to be undertaken in order to extract information from the vibrational response signatures that is relevant to the condition of the anchorage. Novel artificial intelligence techniques are used in order to learn the complicated relationship that exists between an anchorage and its response to an impulse. The system has a worldwide patent and is currently licensed commercially.
A lumped parameter dynamic model has been developed which is capable of describing the general frequency relationship with increasing post-tension level as exhibited by the signals captured from real anchorages. The normal procedure with the system is to train a neural network on data that has been taken from an anchorage over a range of post-tension levels. Further data is needed in order to test the neural network. This process can be time consuming, and the lumped parameter dynamic model has the potential of producing data that could be used for training purposes, thereby reducing the amount of time needed on site, and reducing the overall cost of the system's operation.
This paper presents data that has been produced by the lumped parameter dynamic model and compares it with data from a real anchorage. Noise is added to the results produced by the lumped parameter dynamic model in order to match more closely the experimental data. A neural network is trained on the data produced by the model, and the results of diagnosis of real data are presented. Problems are encountered with the diagnosis of the neural network with experimental data, and a new method for the training of the neural network is explored. The improved results of the neural network trained on data produced by the lumped parameter dynamic model to experimental data are shown. It is shown how the results from the lumped parameter dynamic model correspond well to the experimental results.
Original language | English |
---|---|
Pages (from-to) | 131-142 |
Number of pages | 11 |
Journal | Meccanica |
Volume | 38 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2003 |
Keywords
- neural networks
- ground anchorages
- numerical modelling
- condition monitoring
Cite this
Using a Lumped Parameter Dynamic Model of a Rock Bolt to Produce Training Data for a Neural Network for Diagnosis of Real Data. / Starkey, Andrew; Ivanovic, Ana; Neilson, Richard David; Rodger, Albert Alexander.
In: Meccanica, Vol. 38, No. 1, 01.2003, p. 131-142.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Using a Lumped Parameter Dynamic Model of a Rock Bolt to Produce Training Data for a Neural Network for Diagnosis of Real Data
AU - Starkey, Andrew
AU - Ivanovic, Ana
AU - Neilson, Richard David
AU - Rodger, Albert Alexander
PY - 2003/1
Y1 - 2003/1
N2 - Ground anchorage systems are used extensively throughout the world as supporting devices for civil engineering structures such as bridges and tunnels. The condition monitoring of ground anchorages is a new area of research, with the long term objective being a wholly automated or semi-automated condition monitoring system capable of repeatable and accurate diagnosis of faults and anchorage post-tension levels. The ground anchorage integrity testing (GRANIT) system operates by applying an impulse of known force by means of an impact device that is attached to the tendon of the anchorage. The vibration signals that arise from this impulse are complex in nature and require analysis to be undertaken in order to extract information from the vibrational response signatures that is relevant to the condition of the anchorage. Novel artificial intelligence techniques are used in order to learn the complicated relationship that exists between an anchorage and its response to an impulse. The system has a worldwide patent and is currently licensed commercially.A lumped parameter dynamic model has been developed which is capable of describing the general frequency relationship with increasing post-tension level as exhibited by the signals captured from real anchorages. The normal procedure with the system is to train a neural network on data that has been taken from an anchorage over a range of post-tension levels. Further data is needed in order to test the neural network. This process can be time consuming, and the lumped parameter dynamic model has the potential of producing data that could be used for training purposes, thereby reducing the amount of time needed on site, and reducing the overall cost of the system's operation.This paper presents data that has been produced by the lumped parameter dynamic model and compares it with data from a real anchorage. Noise is added to the results produced by the lumped parameter dynamic model in order to match more closely the experimental data. A neural network is trained on the data produced by the model, and the results of diagnosis of real data are presented. Problems are encountered with the diagnosis of the neural network with experimental data, and a new method for the training of the neural network is explored. The improved results of the neural network trained on data produced by the lumped parameter dynamic model to experimental data are shown. It is shown how the results from the lumped parameter dynamic model correspond well to the experimental results.
AB - Ground anchorage systems are used extensively throughout the world as supporting devices for civil engineering structures such as bridges and tunnels. The condition monitoring of ground anchorages is a new area of research, with the long term objective being a wholly automated or semi-automated condition monitoring system capable of repeatable and accurate diagnosis of faults and anchorage post-tension levels. The ground anchorage integrity testing (GRANIT) system operates by applying an impulse of known force by means of an impact device that is attached to the tendon of the anchorage. The vibration signals that arise from this impulse are complex in nature and require analysis to be undertaken in order to extract information from the vibrational response signatures that is relevant to the condition of the anchorage. Novel artificial intelligence techniques are used in order to learn the complicated relationship that exists between an anchorage and its response to an impulse. The system has a worldwide patent and is currently licensed commercially.A lumped parameter dynamic model has been developed which is capable of describing the general frequency relationship with increasing post-tension level as exhibited by the signals captured from real anchorages. The normal procedure with the system is to train a neural network on data that has been taken from an anchorage over a range of post-tension levels. Further data is needed in order to test the neural network. This process can be time consuming, and the lumped parameter dynamic model has the potential of producing data that could be used for training purposes, thereby reducing the amount of time needed on site, and reducing the overall cost of the system's operation.This paper presents data that has been produced by the lumped parameter dynamic model and compares it with data from a real anchorage. Noise is added to the results produced by the lumped parameter dynamic model in order to match more closely the experimental data. A neural network is trained on the data produced by the model, and the results of diagnosis of real data are presented. Problems are encountered with the diagnosis of the neural network with experimental data, and a new method for the training of the neural network is explored. The improved results of the neural network trained on data produced by the lumped parameter dynamic model to experimental data are shown. It is shown how the results from the lumped parameter dynamic model correspond well to the experimental results.
KW - neural networks
KW - ground anchorages
KW - numerical modelling
KW - condition monitoring
U2 - 10.1023/A:1022031720855
DO - 10.1023/A:1022031720855
M3 - Article
VL - 38
SP - 131
EP - 142
JO - Meccanica
JF - Meccanica
SN - 0025-6455
IS - 1
ER -