Using UAV acquired photography and structure from motion techniques for studying glacier landforms

application to the glacial flutes at Isfallsglaciären

Jeremy C. Ely, Conor Graham, Iestyn D. Barr, Brice R. Rea, Matteo Spagnolo, Jeff Evans

Research output: Contribution to journalArticle

19 Citations (Scopus)
5 Downloads (Pure)

Abstract

Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. This article is protected by copyright. All rights reserved.
Original languageEnglish
Pages (from-to)877-888
Number of pages12
JournalEarth Surface Processes and Landforms
Volume42
Issue number6
Early online date22 Sep 2016
DOIs
Publication statusPublished - May 2017

Fingerprint

photography
landform
glacier
boulder
relief
glacial landform
geomorphological feature
orthophoto
subaerial exposure
aerial photography
infill
fan
geomorphology
funeral
digital elevation model
ice sheet
erosion
aid
cavity
weather

Keywords

  • UAV
  • structure from motion
  • DEM
  • glacial flutes
  • glacial geomorphology

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)
  • Social Sciences(all)

Cite this

Using UAV acquired photography and structure from motion techniques for studying glacier landforms : application to the glacial flutes at Isfallsglaciären. / Ely, Jeremy C.; Graham, Conor; Barr, Iestyn D.; Rea, Brice R.; Spagnolo, Matteo; Evans, Jeff.

In: Earth Surface Processes and Landforms, Vol. 42, No. 6, 05.2017, p. 877-888.

Research output: Contribution to journalArticle

@article{b9f4300a0286434b9c58acbec7925da5,
title = "Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaci{\"a}ren",
abstract = "Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaci{\"a}ren, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. This article is protected by copyright. All rights reserved.",
keywords = "UAV, structure from motion, DEM, glacial flutes, glacial geomorphology",
author = "Ely, {Jeremy C.} and Conor Graham and Barr, {Iestyn D.} and Rea, {Brice R.} and Matteo Spagnolo and Jeff Evans",
note = "Acknowledgments The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262693 (INTERACT). This work was also supported by an equipment loan from the NERC Geophysical Equipment Facility (loan number 1008). The authors would like to thank the Tarfala research station staff. J.C.E would like to thank the Denisons for supporting his PhD. We would also like to thank Jonathan Carrivick, Mark Smith and Daniel Carrivick for access to their DEM. Chris Clark is thanked for his support of the project and for useful discussions. The authors also thank the two reviewers and the editorial team for their comments which improved this manuscript.",
year = "2017",
month = "5",
doi = "10.1002/esp.4044",
language = "English",
volume = "42",
pages = "877--888",
journal = "Earth Surface Processes and Landforms",
issn = "0197-9337",
publisher = "John Wiley and Sons Ltd",
number = "6",

}

TY - JOUR

T1 - Using UAV acquired photography and structure from motion techniques for studying glacier landforms

T2 - application to the glacial flutes at Isfallsglaciären

AU - Ely, Jeremy C.

AU - Graham, Conor

AU - Barr, Iestyn D.

AU - Rea, Brice R.

AU - Spagnolo, Matteo

AU - Evans, Jeff

N1 - Acknowledgments The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262693 (INTERACT). This work was also supported by an equipment loan from the NERC Geophysical Equipment Facility (loan number 1008). The authors would like to thank the Tarfala research station staff. J.C.E would like to thank the Denisons for supporting his PhD. We would also like to thank Jonathan Carrivick, Mark Smith and Daniel Carrivick for access to their DEM. Chris Clark is thanked for his support of the project and for useful discussions. The authors also thank the two reviewers and the editorial team for their comments which improved this manuscript.

PY - 2017/5

Y1 - 2017/5

N2 - Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. This article is protected by copyright. All rights reserved.

AB - Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. This article is protected by copyright. All rights reserved.

KW - UAV

KW - structure from motion

KW - DEM

KW - glacial flutes

KW - glacial geomorphology

U2 - 10.1002/esp.4044

DO - 10.1002/esp.4044

M3 - Article

VL - 42

SP - 877

EP - 888

JO - Earth Surface Processes and Landforms

JF - Earth Surface Processes and Landforms

SN - 0197-9337

IS - 6

ER -