White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host

Michelle L Verant, Carol U Meteyer, John R Speakman, Paul M Cryan, Jeffrey M Lorch, David S Blehert

Research output: Contribution to journalArticlepeer-review

153 Citations (Scopus)
7 Downloads (Pure)

Abstract

BACKGROUND: The physiological effects of white-nose syndrome (WNS) in hibernating bats and ultimate causes of mortality from infection with Pseudogymnoascus (formerly Geomyces) destructans are not fully understood. Increased frequency of arousal from torpor described among hibernating bats with late-stage WNS is thought to accelerate depletion of fat reserves, but the physiological mechanisms that lead to these alterations in hibernation behavior have not been elucidated. We used the doubly labeled water (DLW) method and clinical chemistry to evaluate energy use, body composition changes, and blood chemistry perturbations in hibernating little brown bats (Myotis lucifugus) experimentally infected with P. destructans to better understand the physiological processes that underlie mortality from WNS.

RESULTS: These data indicated that fat energy utilization, as demonstrated by changes in body composition, was two-fold higher for bats with WNS compared to negative controls. These differences were apparent in early stages of infection when torpor-arousal patterns were equivalent between infected and non-infected animals, suggesting that P. destructans has complex physiological impacts on its host prior to onset of clinical signs indicative of late-stage infections. Additionally, bats with mild to moderate skin lesions associated with early-stage WNS demonstrated a chronic respiratory acidosis characterized by significantly elevated dissolved carbon dioxide, acidemia, and elevated bicarbonate. Potassium concentrations were also significantly higher among infected bats, but sodium, chloride, and other hydration parameters were equivalent to controls.

CONCLUSIONS: Integrating these novel findings on the physiological changes that occur in early-stage WNS with those previously documented in late-stage infections, we propose a multi-stage disease progression model that mechanistically describes the pathologic and physiologic effects underlying mortality of WNS in hibernating bats. This model identifies testable hypotheses for better understanding this disease, knowledge that will be critical for defining effective disease mitigation strategies aimed at reducing morbidity and mortality that results from WNS.

Original languageEnglish
Article number10
Number of pages10
JournalBMC Physiology
Volume14
DOIs
Publication statusPublished - 9 Dec 2014

Bibliographical note

Acknowledgments

This project was financially supported by the US Geological Survey through a cooperative agreement with the University of Wisconsin – Madison. We are indebted to Dave and Jennifer Redell and Paul White from the Wisconsin Department of Natural Resources for collecting the animals used to complete this study and for assisting with data collection. We thank Melissa Behr for assistance with necropsies and NWHC Animal Care Staff for their help with set-up and maintenance of animals. We thank Lobke Vaanholt and Catherine Hambly (University of Aberdeen, Scotland) for their expertise and coordination in the analyses of the DLW blood samples. Funds were used for direct project costs only. Use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Keywords

  • White-nose syndrome
  • Bats
  • Doubly labeled water

Fingerprint

Dive into the research topics of 'White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host'. Together they form a unique fingerprint.

Cite this