Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs

Albert Ricken, Paul Lochhead, Maria Kontogiannea, Riaz Farookhi

Research output: Contribution to journalArticle

103 Citations (Scopus)

Abstract

Ovarian cadherins, in addition to acting as structural (adhesion) molecules, also function as modulators of gene activity. The dual role of beta-catenin as an intracellular component of the cadherin adhesion complex and as a transcription factor provides a possible explanation for these cadherin effects. Because the transcriptional activity of beta-catenin is dependent on activation by the wnt signaling cascade, we examined whether components of this cascade are expressed in the rat ovary. Using RT-PCR with degenerate primers on RNA from ovaries of hormone-stimulated immature rats, we identified transcripts for wnt-2 and wnt-2b. RT-PCR and in situ hybridization (ISH) demonstrated that granulosa cells express wnt-2 mRNA. Because the sequence for rat wnt-2b has not been reported, we obtained additional sequence by screening a rat ovarian cDNA library. RT-PCR analysis, using primers designed from this wnt-2b cDNA sequence, failed to detect transcripts in the ovarian follicular compartment (granulosa and oocyte). ISH revealed that the ovarian surface epithelium expresses wnt-2b mRNA. Using a similar degenerate RT-PCR approach, we detected expression of a putative wnt receptor, frizzled-4 (fzd-4), and a cytoplasmic component of the wnt signaling cascade, disheveled-2 (dsh-2), in the rat ovary. Further analyses using both RT-PCR and ISH indicated that granulosa cells express fzd-4 mRNA. The expression of wnt-2b transcripts in rat ovarian surface epithelium prompted us to examine whether the homologous gene is expressed in human ovarian cancer cell lines. RT-PCR, using degenerate and specific primers for wnts, on RNA from five ovarian cancer cell lines confirmed the expression of transcripts for wnt-2b. Two additional wnt transcripts (wnt-5a and wnt-11) were detected in the cancer cell lines and in the rat ovary. These results demonstrate that transcripts corresponding to components of the wnt signaling cascade are expressed in the immature rat ovary. The localization of these transcripts in specific ovarian compartments suggests that this signal transduction pathway may be involved in follicular development and ovarian function. Furthermore, because wnts have been implicated in the oncogenic transformation of epithelial cells, our results raise the possibility that aberrant wnt expression may be involved in ovarian tumorigenesis in humans.
Original languageEnglish
Pages (from-to)2741-9
Number of pages9
JournalEndocrinology
Volume143
Issue number7
Publication statusPublished - 2002

Fingerprint

Ovary
Messenger RNA
Polymerase Chain Reaction
Cadherins
In Situ Hybridization
Granulosa Cells
beta Catenin
Cell Line
Ovarian Neoplasms
Epithelium
Wnt Receptors
Gene Library
Genes
Oocytes
Signal Transduction
Carcinogenesis
Transcription Factors
Complementary DNA
Epithelial Cells
Hormones

Cite this

Ricken, A., Lochhead, P., Kontogiannea, M., & Farookhi, R. (2002). Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology, 143(7), 2741-9.

Wnt signaling in the ovary : identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. / Ricken, Albert; Lochhead, Paul; Kontogiannea, Maria; Farookhi, Riaz.

In: Endocrinology, Vol. 143, No. 7, 2002, p. 2741-9.

Research output: Contribution to journalArticle

Ricken, A, Lochhead, P, Kontogiannea, M & Farookhi, R 2002, 'Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs', Endocrinology, vol. 143, no. 7, pp. 2741-9.
Ricken, Albert ; Lochhead, Paul ; Kontogiannea, Maria ; Farookhi, Riaz. / Wnt signaling in the ovary : identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. In: Endocrinology. 2002 ; Vol. 143, No. 7. pp. 2741-9.
@article{4d689a531c5b413eb6c70ff1cd0e8a80,
title = "Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs",
abstract = "Ovarian cadherins, in addition to acting as structural (adhesion) molecules, also function as modulators of gene activity. The dual role of beta-catenin as an intracellular component of the cadherin adhesion complex and as a transcription factor provides a possible explanation for these cadherin effects. Because the transcriptional activity of beta-catenin is dependent on activation by the wnt signaling cascade, we examined whether components of this cascade are expressed in the rat ovary. Using RT-PCR with degenerate primers on RNA from ovaries of hormone-stimulated immature rats, we identified transcripts for wnt-2 and wnt-2b. RT-PCR and in situ hybridization (ISH) demonstrated that granulosa cells express wnt-2 mRNA. Because the sequence for rat wnt-2b has not been reported, we obtained additional sequence by screening a rat ovarian cDNA library. RT-PCR analysis, using primers designed from this wnt-2b cDNA sequence, failed to detect transcripts in the ovarian follicular compartment (granulosa and oocyte). ISH revealed that the ovarian surface epithelium expresses wnt-2b mRNA. Using a similar degenerate RT-PCR approach, we detected expression of a putative wnt receptor, frizzled-4 (fzd-4), and a cytoplasmic component of the wnt signaling cascade, disheveled-2 (dsh-2), in the rat ovary. Further analyses using both RT-PCR and ISH indicated that granulosa cells express fzd-4 mRNA. The expression of wnt-2b transcripts in rat ovarian surface epithelium prompted us to examine whether the homologous gene is expressed in human ovarian cancer cell lines. RT-PCR, using degenerate and specific primers for wnts, on RNA from five ovarian cancer cell lines confirmed the expression of transcripts for wnt-2b. Two additional wnt transcripts (wnt-5a and wnt-11) were detected in the cancer cell lines and in the rat ovary. These results demonstrate that transcripts corresponding to components of the wnt signaling cascade are expressed in the immature rat ovary. The localization of these transcripts in specific ovarian compartments suggests that this signal transduction pathway may be involved in follicular development and ovarian function. Furthermore, because wnts have been implicated in the oncogenic transformation of epithelial cells, our results raise the possibility that aberrant wnt expression may be involved in ovarian tumorigenesis in humans.",
author = "Albert Ricken and Paul Lochhead and Maria Kontogiannea and Riaz Farookhi",
year = "2002",
language = "English",
volume = "143",
pages = "2741--9",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "7",

}

TY - JOUR

T1 - Wnt signaling in the ovary

T2 - identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs

AU - Ricken, Albert

AU - Lochhead, Paul

AU - Kontogiannea, Maria

AU - Farookhi, Riaz

PY - 2002

Y1 - 2002

N2 - Ovarian cadherins, in addition to acting as structural (adhesion) molecules, also function as modulators of gene activity. The dual role of beta-catenin as an intracellular component of the cadherin adhesion complex and as a transcription factor provides a possible explanation for these cadherin effects. Because the transcriptional activity of beta-catenin is dependent on activation by the wnt signaling cascade, we examined whether components of this cascade are expressed in the rat ovary. Using RT-PCR with degenerate primers on RNA from ovaries of hormone-stimulated immature rats, we identified transcripts for wnt-2 and wnt-2b. RT-PCR and in situ hybridization (ISH) demonstrated that granulosa cells express wnt-2 mRNA. Because the sequence for rat wnt-2b has not been reported, we obtained additional sequence by screening a rat ovarian cDNA library. RT-PCR analysis, using primers designed from this wnt-2b cDNA sequence, failed to detect transcripts in the ovarian follicular compartment (granulosa and oocyte). ISH revealed that the ovarian surface epithelium expresses wnt-2b mRNA. Using a similar degenerate RT-PCR approach, we detected expression of a putative wnt receptor, frizzled-4 (fzd-4), and a cytoplasmic component of the wnt signaling cascade, disheveled-2 (dsh-2), in the rat ovary. Further analyses using both RT-PCR and ISH indicated that granulosa cells express fzd-4 mRNA. The expression of wnt-2b transcripts in rat ovarian surface epithelium prompted us to examine whether the homologous gene is expressed in human ovarian cancer cell lines. RT-PCR, using degenerate and specific primers for wnts, on RNA from five ovarian cancer cell lines confirmed the expression of transcripts for wnt-2b. Two additional wnt transcripts (wnt-5a and wnt-11) were detected in the cancer cell lines and in the rat ovary. These results demonstrate that transcripts corresponding to components of the wnt signaling cascade are expressed in the immature rat ovary. The localization of these transcripts in specific ovarian compartments suggests that this signal transduction pathway may be involved in follicular development and ovarian function. Furthermore, because wnts have been implicated in the oncogenic transformation of epithelial cells, our results raise the possibility that aberrant wnt expression may be involved in ovarian tumorigenesis in humans.

AB - Ovarian cadherins, in addition to acting as structural (adhesion) molecules, also function as modulators of gene activity. The dual role of beta-catenin as an intracellular component of the cadherin adhesion complex and as a transcription factor provides a possible explanation for these cadherin effects. Because the transcriptional activity of beta-catenin is dependent on activation by the wnt signaling cascade, we examined whether components of this cascade are expressed in the rat ovary. Using RT-PCR with degenerate primers on RNA from ovaries of hormone-stimulated immature rats, we identified transcripts for wnt-2 and wnt-2b. RT-PCR and in situ hybridization (ISH) demonstrated that granulosa cells express wnt-2 mRNA. Because the sequence for rat wnt-2b has not been reported, we obtained additional sequence by screening a rat ovarian cDNA library. RT-PCR analysis, using primers designed from this wnt-2b cDNA sequence, failed to detect transcripts in the ovarian follicular compartment (granulosa and oocyte). ISH revealed that the ovarian surface epithelium expresses wnt-2b mRNA. Using a similar degenerate RT-PCR approach, we detected expression of a putative wnt receptor, frizzled-4 (fzd-4), and a cytoplasmic component of the wnt signaling cascade, disheveled-2 (dsh-2), in the rat ovary. Further analyses using both RT-PCR and ISH indicated that granulosa cells express fzd-4 mRNA. The expression of wnt-2b transcripts in rat ovarian surface epithelium prompted us to examine whether the homologous gene is expressed in human ovarian cancer cell lines. RT-PCR, using degenerate and specific primers for wnts, on RNA from five ovarian cancer cell lines confirmed the expression of transcripts for wnt-2b. Two additional wnt transcripts (wnt-5a and wnt-11) were detected in the cancer cell lines and in the rat ovary. These results demonstrate that transcripts corresponding to components of the wnt signaling cascade are expressed in the immature rat ovary. The localization of these transcripts in specific ovarian compartments suggests that this signal transduction pathway may be involved in follicular development and ovarian function. Furthermore, because wnts have been implicated in the oncogenic transformation of epithelial cells, our results raise the possibility that aberrant wnt expression may be involved in ovarian tumorigenesis in humans.

M3 - Article

C2 - 12072409

VL - 143

SP - 2741

EP - 2749

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 7

ER -