
Transmission of Hypervirulence Traits via Sexual
Reproduction within and between Lineages of the
Human Fungal Pathogen Cryptococcus gattii
Kerstin Voelz1,2, Hansong Ma1¤a, Sujal Phadke3, Edmond J. Byrnes3¤b, Pinkuan Zhu4, Olaf Mueller3,

Rhys A. Farrer5, Daniel A. Henk5¤c, Yonathan Lewit3¤d, Yen-Ping Hsueh3¤e, Matthew C. Fisher5,

Alexander Idnurm4, Joseph Heitman3*, Robin C. May1,2*

1 Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Birmingham, United Kingdom, 2 The National Institute of Health Research

Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom, 3 Department of Molecular Genetics

and Microbiology, Duke University, Durham, North Carolina, United States of America, 4 School of Biological Sciences, University of Missouri, Kansas City, Missouri, United

States of America, 5 Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom

Abstract

Since 1999 a lineage of the pathogen Cryptococcus gattii has been infecting humans and other animals in Canada and the
Pacific Northwest of the USA. It is now the largest outbreak of a life-threatening fungal infection in a healthy population in
recorded history. The high virulence of outbreak strains is closely linked to the ability of the pathogen to undergo rapid
mitochondrial tubularisation and proliferation following engulfment by host phagocytes. Most outbreaks spread by
geographic expansion across suitable niches, but it is known that genetic re-assortment and hybridisation can also lead to
rapid range and host expansion. In the context of C. gattii, however, the likelihood of virulence traits associated with the
outbreak lineages spreading to other lineages via genetic exchange is currently unknown. Here we address this question
by conducting outgroup crosses between distantly related C. gattii lineages (VGII and VGIII) and ingroup crosses between
isolates from the same molecular type (VGII). Systematic phenotypic characterisation shows that virulence traits are
transmitted to outgroups infrequently, but readily inherited during ingroup crosses. In addition, we observed higher levels
of biparental (as opposed to uniparental) mitochondrial inheritance during VGII ingroup sexual mating in this species and
provide evidence for mitochondrial recombination following mating. Taken together, our data suggest that
hypervirulence can spread among the C. gattii lineages VGII and VGIII, potentially creating novel hypervirulent
genotypes, and that current models of uniparental mitochondrial inheritance in the Cryptococcus genus may not be
universal.
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Introduction

Cryptococcus neoformans and C. gattii are the causative agents of

cryptococcosis in humans. C. neoformans typically infects HIV-

infected individuals and other patients with immunodeficiencies,

but has also been found in apparently immunocompetent

individuals in the Far East [1,2]. C. gattii is a primary pathogen

that causes disease in otherwise healthy people [3,4], but has also

been found in HIV patients in Malawi, Africa and California,

USA [5,6]. C. gattii accounts for less than 1% of all cryptococcosis

cases, and until the late 1990s occurred mostly in subtropical

regions of the world. However, in 1999, an outbreak of C. gattii was

reported on Vancouver Island in domestic pets and people [7–9].

This outbreak spread to mainland Canada and then into the

northwestern states of the United States [10–13] and currently

numbers more than 400 cases [14–17].

C. gattii is divided into distinct clades (VGI-VGIV) [14], with the

outbreak originating on Vancouver Island, and a more recent

outbreak in Oregon [18,19], being caused by three clonal groups

within VGII (VGIIa, VGIIb and VGIIc) [20]. These hyperviru-

lent outbreaks are characterized by an unusual ability of the

pathogen to parasitise host phagocytic cells: upon engulfment by

macrophages, outbreak strains initiate mitochondrial tubularisa-

tion and rapid intracellular proliferation of the fungus [21].
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Cryptococcosis is not spread from infected animals or humans

to susceptible hosts but rather infections are acquired from the

environment. Hence, cryptococcal species likely experience

strong selective pressure from factors encountered within

environmental niches. Genetic recombination by meiotic sexual

reproduction in eukaryotic pathogens is a widely-occurring

mechanism that generates genetic diversity (and hence novel

phenotypic diversity) but carries the risk of destroying beneficial

gene combinations [22]. The genetic distance across which

genetic recombination occurs yields very different outcomes.

Outcrossing and hybridization can result in dramatic changes to

genotype and resulting virulence phenotypes. For example, Grigg

et al. [23] have demonstrated that outcrossing sexual recombina-

tion can be a major force in shaping eukaryotic pathogens, since

recombinant Toxoplasma progeny from crosses between two

distinct ancestral lines type II and type III are significantly more

virulent than either parent. A similar hypothesis has been

proposed for the origin of C. gattii outbreak strains [24]. However,

outcrossing can also come at the cost of breaking up highly-fit

coadapted gene-complexes, such as those that enable host

adaptation [25,26], and can result in lethal levels of genetic load

resulting in widespread inviability.

Therefore, estimating how likely it is for hypervirulence traits to

move between C. gattii lineages by recombination is critical both

for predicting the likelihood of novel hypervirulent genotypes

occurring and, more broadly, in understanding the origins of

infectious outbreaks. In addition, given that the expression of

mitochondrially-encoded genes correlates with virulence in C.

gattii, but mitochondrial genes do not contribute to virulence in C.

neoformans [21,27], important questions remain about the relative

role of mitochondrially-encoded, versus nuclear-encoded, genes in

controlling virulence in this pathogen. Here we address both of

these questions via a series of genetic crosses, followed by

comprehensive phenotypic analyses. Our findings demonstrate

that hypervirulence in C. gattii is a complex, multigenic trait.

Surprisingly, however, this trait can be transmitted relatively easily

to other lineages and is not strictly limited to one mitochondrial

genotype. Finally, we show that, in contrast to existing paradigms,

mitochondrial inheritance in C. gattii is not strictly uniparental and

thus current models of genetic exchange in this pathogenic clade

should be revisited.

Results

Experimental Design of Ingroup and Outgroup Crosses
This study addresses two questions:

1) How likely is the spread of hypervirulence traits between C.

gattii lineages?

2) What is the contribution of the mitochondrial genome in

controlling virulence in C. gattii?

Recent work has demonstrated that the ability to change

mitochondrial morphology is closely linked to intracellular

proliferation and thus hypervirulence in C. gattii [21]. In the

related pathogen C. neoformans, as in most eukaryotes, mitochon-

dria are inherited from only one parent (in this case the MATa
parent) following mating [28,29]. To exploit this uniparental

inheritance and to test the likelihood of virulence traits spreading

within the C. gattii population, we conducted a series of crosses in

which progeny would inherit mitochondria either from a

hypervirulent parent, or from a non-outbreak strain exhibiting

wild type virulence. If phenotypes associated with hypervirulence

(mitochondrial tubularisation in response to phagocytosis and

rapid intracellular proliferation) were solely determined by

mitochondrial genotypes then all progeny from each cross would

have the same phenotype as the MATa parent (Figure 1A).

The ability to proliferate within macrophages is a proven

predictor of virulence in C. neoformans and C. gattii [5,21]. To assess

virulence in a comprehensive progeny set in this study, we utilized

intracellular proliferation as a proxy-measure of virulence and

investigated its relationship to mitochondrial tubularisation.

Our experimental approach included both outgroup crosses,

between strains from two different molecular groups (VGII and

VGIII), and ingroup crosses, between strains from the same

molecular group (VGII) (Figure 1B). Despite the fact that VGIII

strains are more fertile than other C. gattii strains [24,30,31],

experimental mating of C. gattii strains is extremely difficult in the

laboratory setting. However, within the VGIII lineage, the VGIII

pair B4546 (MATa) and NIH312 (MATa) had previously been

identified as mating test strains in an extensive screening study

[32]. These strains also exhibit low intracellular proliferation rates

and hence were chosen for the outgroup crosses in this study.

Disappointingly, after various attempts, we and others were unable

to mate MATa-VGII with MATa–VGII strains that exhibit

explicitly distinct intracellular proliferation values. We were,

however, able to conduct mating between VGII strains with more

similar intracellular proliferation rates allowing for dissection of

individual spores.

Overall, there was a low rate of spore germination in both the

VGII a x VGIII a and VGII a x VGIII a mating pairs. This is

consistent with population genetic evidence [24,33] that these

molecular types are genetically isolated with respect to nuclear

DNA exchange and hence consistent with assignment as distinct

species [34]. For each mating (B4546 x R265, CBS10090 x

NIH312 and JF101 x AIg289), at least 50 individual spores (50, 50,

63) were dissected, and in all cases none germinated (0/163). After

extensive attempts we were able to obtain six viable microdissected

spores (6/140) from an outgroup cross (strains YL4 x 97/433).

Crosses across species boundaries in Escherichia, Salmonella and

Saccharomyces species are known to suffer from extensive DNA

mismatches and cause serious problems during meiosis attribut-

able to the mismatch repair system aborting homologous

recombination [35–37]. To circumvent this substantial barrier

and in an attempt to generate a more comprehensive working

progeny set, a region of highly dense spores and hyphae was

Author Summary

How infections spread within the human population is an
important question in forecasting potential epidemics.
One way to investigate potential mechanisms is to test
experimentally whether combinations of genes that confer
high virulence are able to spread to less-virulent lineages.
Here, we address this question in a fungal pathogen that is
causing an outbreak of meningitis in healthy humans in
Canada and the Pacific Northwest. We demonstrate that
virulence traits are easily transmitted between closely
related pathogenic strains, but are more difficult to
transmit to more distant lineages. In addition, we show
that a paradigm of organelle inheritance, namely that
mitochondria are inherited uniparentally from the a
mating type, is altered in the R265a outbreak strain such
that it transmits its mitochondrial genome to 25–30% of its
progeny. This biparental inheritance likely contributes to
increased mitochondrial recombination. Taken together,
our data suggest that virulence traits may be relatively
mobile within this species and that current models of
mitochondrial inheritance may require revising.

Virulence Transmission in Cryptococcus gattii
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selected, plated, and colonies that arose were isolated and

characterized. This type of analysis is therefore subject to possible

isolation of parental yeast cells, blastospores (yeast cells derived

from hyphae post-fusion but prior to nuclear fusion and meiosis),

diploid fusion products, and true haploid meiotic progeny. For

these reasons, and to better understand the dynamics of mating

between these two distinct molecular types, the resulting progeny

sets were subjected to molecular (MultiLocus Sequence Typing;

MLST/Fluorescence-activated cell sorting; FACS) and phenotypic

(self-filamentation) analyses.

As an additional approach, VGIII strains carrying the crg1::NEO

mutation were crossed with a VGII strain carrying the bwc2::NAT

mutation (JF101xAIg289 and JF109xAIg254) (Figure 1B). The

parental strain AIg289 also carried a mutation within the FUR1

gene that confers resistant to 5-fluorouracil. Mutation of both

Crg1 and Bwc2 enhance mating under conditions that normally

repress it. Basidiospores were unviable (0/63 germinated).

However, putative fusion or post-meiotic strains were isolated by

plating onto YPD medium containing both nourseothricin and

G418. Strains were examined for phenotypes and PCR-RFLP

markers.

Molecular Characterisation of Progeny from Outgroup
Cross R265 x B4546

In the mating pair between VGII a (R265) x VGIII a (B4546),

we isolated a total of 18 progeny as described above. Amplification

of the ATP6 gene (encoded by the mitochondrial genome) revealed

that 100% of the progeny inherited the a mitochondrial genome

(Figures 2A&B and Supplementary Information), consistent with

previous studies showing uniparental mitochondrial inheritance

during a-a mating [28,38,39].

Based on FACS analysis, we then determined that 18/18

isolates showed signs of diploidy (Figure 2 C&D) and, in line with

this, MLST analysis showed signs of heterozygosity at 7/8 markers

(Figure 2C). In all of the isolates, the remaining marker (PLB1)

specifically amplified the VGII allele, most likely due to primer

bias or loss of heterozygosity caused by mitotic gene conversion or

partial chromosomal loss. Interestingly, while all 18 strains

retained copies of both SXI1/SXI2, only 17% (3/18) were self-

fertile (Figure 2D).

Six progeny that were restored towards haploidy following

extensive passage on YPD medium, and these showed recombi-

nant genotypes in MLST analysis with alleles contributed by both

parental strains, and ploidy was assessed by FACS analysis

(Figure 2E). None of the progeny showed signs of self-filamenta-

tion, although none were derived from one of the three self-

filamentous parents (Figure 2E).

It is problematic to distinguish aneuploid progeny by FACS

analysis alone. MLST analysis showed signs of heterozygosity for

the markers MPD, GPD1 and LAC1 for all restored ‘‘haploid’’

progeny. We therefore sequenced the genomes of four of the

diploid progeny as well as the respective ‘‘haploid restored’’

progeny and examined read mapping coverage and variant ratios

to determine the ploidy in these strains. This analysis revealed that

all progeny were broadly diploid/haploid, but most also carried

aneuploid regions within at least one of their chromosomes

(Supplementary Information and Figure S1). This analysis also

provided further information about the progeny and restored

‘‘haploid’’ strains’ genetic background: PLB1 was found to be

monoallelic in MLST analysis for progeny and restored ‘‘haploid’’

strains but is heterozygous according to the genome data. IGS and

TEF1 are also monoallelic in the MLST analysis but biallelic

according to the genomic data whereas CAP10 is monoallelic in

both MLST and genomic data, as is the MAT locus for which the

entire chromosome is monoallelic in all strains.

Similar chromosomal abnormalities have previously been

described as a common feature in C. gattii and C. neoformans and

been suggested as an adaptive mechanism to stresses such as

exposure to antifungals [4,40–44].

Molecular Characterisation of Progeny from Outgroup
Cross CBS10090 x NIH312

In the mating between VGII a (CBS10090) x VGIII a
(NIH312), we isolated a total of 16 progeny. Mitochondrial

amplification of the ATP6 gene (mitochondrial) revealed that

100% of the progeny exclusively inherited the a mitochondrial

Figure 1. Experimental design of ingroup and outgroup
crosses. A) Schematic illustration of the crosses between a low or
highly virulent a parent and a high or low virulence a parent
respectively. B) Summary of the strains used for mating, their ability
to proliferate intracellularly within macrophages (IPR), and the number
of progeny isolated from each cross. {Subsequent whole genome
sequence analysis revealed that the progeny and restored ‘haploid’
strains are aneuploid strains. Progeny showed regions of triploidy and
restored strains regions of diploidy (Figure S1).
doi:10.1371/journal.pgen.1003771.g001
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genome (Figure 3B). Based on FACS analysis, we found that ,half

(7/16) were haploid (1N) and the rest (9/16) were diploid (2N)

although this level of analysis cannot distinguish aneuploid isolates

(Figure 3A). When each of the progeny was analyzed at eight

unlinked MLST loci, including one sex-specific marker (SXI1/

SXI2), 5/16 showed no signs of nuclear exchange (all a/haploid)

but all five carried an a mitochondrial genome (Figure 3B). This

indicates that these five mitochondrial exchange strains are the

product of blastospores (i.e., monokaryotic yeast budding off of

dikaryotic hyphae). We also show that two isolates harbor alleles

from both nuclear genomes, have uniparental mitochondrial

inheritance from the a parent, and also are haploid by FACS

analysis, indicating that these two isolates were produced via

meiosis, although one of the two shows increased levels of

inheritance from the VGIII parent (Progeny 2 has 7/8 MLST loci

from the VGIII parent while P3 has 4/8 MLST loci from the VGIII

parent). The 9/16 remaining isolates show signs of aneuploidy: they

all retain markers with sequences from both parental nuclear

genomes and are all 2N or greater than 1N based on FACS analysis

(Figure 3). These nine isolates also show self-fertility and 7/9 have

both sex determining alleles (Figure 3B). The remaining two

progeny (1 and 13) show no amplification of the SXI2a allele,

however, these are self-fertile a isolates likely exhibiting robust a-a
unisexual reproduction. In all of the isolates, the CAP10 locus

specifically amplified the VGIII allele, again suggesting either an

amplification bias or the loss of this region of chromosome 11.

Molecular Characterisation of Progeny from Additional
Outgroup Crosses

In the mating between VGIII a (97/433) x VGII a (YL4), we

isolated a total of 7 progeny as described above. None of the

progeny showed signs of self-fertility. Nuclear markers indicated

that all progeny except SP130, which received all tested alleles

from the VGIII a parent (97/433), were recombinant. Amplifi-

cation of the ATP6 gene (encoded by the mitochondrial genome)

revealed that 4/7 of the progeny inherited the a and 3/7 the a
mitochondrial genome (Figure 4A) indicating non-uniparental

inheritance in this outgroup cross.

For the crosses with marked strains VGII a (AIg254) x VGIII a
(JF109) and VGIII a (JF101) x VGII a (AIG289) three and six

viable progeny were isolated. (Figure 4B&C). All nine progeny

were recombinant compared to the parental isolates. They also all

had inherited their mitochondrial genotype from the a parent.

Collectively, our molecular and phenotypic findings indicate

that the rate of successful meiosis is low during VGII x VGIII

mating with only 2/16 viable progeny being haploid recombinants

in a VGII a x VGIII a mating and all of the viable progeny from

the VGII a x VGIII a cross being diploid (2N). Thus, both sets of

Figure 2. Molecular characterisation of the progeny from outgroup crosses of R265 x B4546. ATP6 primers were used to differentiate VGII
and VGIII molecular types and allow for the documentation of uniparental mitochondrial inheritance in C. gattii. A) mtDNA PCR products for 12 strains
(six VGII and six VGIII) where a shorter amplicon is produced from VGII isolates compared to VGIII isolates. B) Uniparental inheritance of the
mitochondrial genome in 18 R265 x B4656 progeny. These progeny showed the same length as their VGIII MATa parent (isolate B4546) and not the a
parental strain (isolate R265). C) MLST analysis of B4546 x R265 progeny was conducted at eight unlinked loci, and scored as VGIII parental (blue,
B = B4546), VGII parental (yellow, R = R265), or both VGII and VGIII (green). The mitochondrial inheritance is also indicated (uniparental). The ploidy
determination is listed based on FACS analysis. D) Self-fertility of R265 x B4546 progeny. Green coloration indicates self-fertility and red coloration
indicates no signs of self-fertility after four weeks. E) MLST analysis of B4546 x R265 haploid progeny was conducted at eight unlinked loci, and scored
as VGIII parental (blue, B = B4546) or VGII parental (yellow, R = R265). The mitochondrial inheritance is also indicated (uniparental). The ploidy
determination is listed based on FACS analysis. None of the haploid progeny showed self-fertility after four weeks (indicated by red coloration).
doi:10.1371/journal.pgen.1003771.g002

Figure 3. Molecular characterisation of progeny from outgroup cross CBS10090 x NIH312. A) Self-fertility of NIH312 x CBS10090 progeny.
Green coloration indicates self-fertility and red coloration indicates no signs of self-fertility after four weeks. B) MLST analysis of NIH312 x CBS10090
progeny was conducted at eight unlinked loci, and scored as VGIII parental (blue), VGII parental (yellow), or both VGII and VGIII (green). The
mitochondrial inheritance is also indicated (uniparental). The ploidy determination is listed based on FACS analysis. Progeny 9 is indicated as 1–2N
due to an unclear FACS plot, although the molecular and self-fertility assays indicate it is diploid. {CBS10090 mitochondrial type by MLST, but
subsequent sequencing indicated that it actually carries a recombinant genome (see Figure 10).
doi:10.1371/journal.pgen.1003771.g003
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crosses indicate the presence of a restrictive barrier in meiosis due

to cryptic speciation between molecular types VGII and VGIII.

Compared to the high germination rate observed between VGIII

x VGIII F1 progeny [32] both crosses produced few viable

progeny. Although more than 163 spores that could be

individually manipulated were produced in VGII x VGIII crosses,

the spores did not germinate, suggesting that most progeny were

largely inviable, as has been previously reported for sexual crosses

between the related species Saccharomyces cerevisiae and S. bayanus

[45], although at lower frequency.

Inheritance of Macrophage Interaction Traits during
Outgroup Crosses R265 x B4546

Given the involvement of mitochondria in cryptococcal

hypervirulence [21] we considered whether mitochondrial geno-

type is the sole determinant of hypervirulence. If so, then we would

anticipate the intracellular proliferation rate and mitochondrial

tubularisation pattern of the progeny from these crosses to match

that of the mitochondrial-donor parent.

Indeed in the outgroup cross R265 x B4546, all 18 hybrid

diploid progeny showed intracellular proliferation rates similar to

that of the low-virulence MATa (mitochondrial donor) parent

B4546 (Figure 5A). In addition, none of these F1 strains were able

to trigger extensive mitochondrial tubularisation in response to

engulfment by a host macrophage (Figure 5B), suggesting that the

replacement of the R265-type mitochondrion with that from

B4546 eliminated the hypervirulence trait in these progeny.

Because the progeny from these cross were all diploid, we tested

whether this hybrid nuclear genotype may be ‘masking’ virulence

phenotypes. However, when we ‘‘restored six’’ of the strains to

haploidy via repeated rounds of mitotic passage, both mitochon-

dria tubularisation and intracellular proliferation rates remained

low (Figures 5C&D and Figure S2A).

Inheritance of Macrophage Interaction Traits during
Outgroup Cross CBS10090 x NIH312

In contrast to the R265 x B4546 cross, the cross between

CBS10090 and NIH312, in which genotyping indicated all

offspring carried mitochondria from the hypervirulent MATa
strain CBS10090, yielded F1 strains showing a wide range of

intracellular proliferation rates (Figure 6A). Notably, two haploid

recombinant offspring (Progeny 2 and 3) carry mitochondria from

the virulent (CBS10090) parent, and yet only one (Progeny 3)

shows a high intracellular proliferation rate. Thus a VGII

mitochondrial genome, at least alone, is not sufficient to confer

hypervirulence in this context.

Interestingly, progeny derived from haploid blastospores are

isolates in which the nuclear genome is identical to the a parent

NIH312, but the mitochondrial genome has been inherited from

the a parent CBS10090. Such isolates show variable intracellular

proliferation rates and tubularisation behaviour, e.g. Progeny 14

presents with IPR similar to the hypervirulent a parent

CBS10090, whereas Progeny 5, 6, 15, and 12 proliferate less well

within macrophages. This indicates that additional mechanisms

might contribute to hypervirulence. In particular the sex induced

silencing pathway becomes activated in blastospore progeny

produced during the sexual cycle [46]. Thus, epigenetic processes

might also contribute to altering biological properties of blasto-

spore progeny, in addition to the exchange of the mitochondrial

genome, leading to modified virulence phenotypes in blastospore

progeny that are identical in their nuclear and mitochondrial

genomes, yet differ phenotypically.

Lastly, we note that recombinant progeny from this cross no

longer showed concordance between intracellular proliferation

and mitochondrial tubularisation rates upon engulfment, with

many strains showing high levels of tubularisation even under

control conditions (Figure 6B and Figure S2B).

Inheritance of Macrophage Interaction Traits in
Additional Outgroup Crosses

To independently verify these observations, we undertook

additional crosses using marked strains, as described above.

Crosses between a hypervirulent MATa and a low virulence

MATa parent resulted in range of intracellular proliferation rates

(Figure 7A&B) whereas the reverse cross between a hypervirulent

MATa and a low virulence MATa parent only produced progeny

Figure 4. Molecular characterisation of progeny from marked outgroup crosses. A) Allele distribution in progeny of crosses YL4 x 97/433,
B) AIg289 x JF101 and C) AIg254 x JF109. Blue 9 = allele from 97/433; Blue A = allele from AIg289 or AIg254; yellow Y = allele from YL4; yellow J = allele
from JF101 or JF109,. One additional marker segregating in the AIg289 x JF101 cross is resistance to 5-fluorouracil. AIg420 is sensitive to this chemical;
the other five progeny are resistant.
doi:10.1371/journal.pgen.1003771.g004
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with low intracellular proliferative capacity (Figure 7C). Within

these outgroup crosses, we also observed misregulated mitochon-

dria (Figure 7D–F and Figure S2C–E).

Taken together, the data from these outgroup crosses thus

strongly suggest that:

i) The inheritance of mitochondria from a hypervirulent parent

is, alone, not sufficient to confer high intracellular prolifera-

tion rates and,

ii) Multiple nuclear genomic regions are likely to interact with

the mitochondrial genome to regulate hypervirulence in this

group.

Molecular Characterisation of Progeny from Ingroup
Crosses

For the two ingroup VGII x VGII crosses (CBS1930 x R265

and LA584 x R265), nuclear markers indicated that all progeny

were recombinant, although one (#37) from the cross between

CBS1930 and R265 is likely aneuploid, because for one

chromosome both parental alleles were amplified. Remarkably,

however, for both crosses significant numbers of progeny inherited

their mitochondria from the unexpected (R265, MATa) parent: 9/

36 for the cross with CBS1930 (Figure 8A) and 4/13 for the cross

with LA584 (Figure 8B). Thus, it appears that, in contrast to

outgroup crosses, crosses within the VGII clade produce a high

proportion of viable recombinant progeny but that non-unipa-

rental inheritance of mitochondria (i.e. in which either parent can

donate mitochondria to daughter cells, but not at the same time)

occurs more frequently than anticipated (25–30% compared to

5% in previous studies). This is analogous to the situation that

occurs in atypical diploid-haploid crosses, in which mitochondria

are inherited from the MATa parent at a high rate [47].

Inheritance of Macrophage Interaction Traits following
Ingroup Crosses

In contrast to the situation with outgroup crosses, several

ingroup crosses resulted in a significant number of progeny that

exhibited intracellular proliferation rates that were as high or even

higher than the hypervirulent MATa parent (R265), despite

inheriting their mitochondrion from a lower-virulence MATa

Figure 5. Macrophage interaction of progeny from outgroup crosses between R265 and B4546. (A and B) Diploid and (C and D)
haploid progeny were tested for their ability to proliferate (A and C) and form tubular mitochondria within macrophages (B and D) and results
compared to their respective parental strains. The a parent (B4546) shows a low intracellular proliferation rate (IPR) and a low percentage of tubular
mitochondria while the a parent (R265) shows a high IPR and a high percentage of tubular mitochondria when growing within macrophages. All
progeny show a low IPR and a low percentage of mitochondrial tubularisation. Shaded red area (A and C) indicates the standard error in the IPR of
the hypervirulent parent. In (C and D), the light blue line indicates the level of tubularisation in vitro for the hypervirulent parent, and the dark blue
line indicates the corresponding parental level of tubularisation within macrophages. Asterisks indicate significant differences between strains
compared to the high IPR parental strain (R265) (* p,0.05, ** p#0.01, *** p#0.001).
doi:10.1371/journal.pgen.1003771.g005
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parent (Figures 9A&B). Conversely, several progeny inherited the

mitochondria from the hypervirulent a parent R265 and yet

displayed low intracellular proliferation rates. Thus, hypervirulent

phenotypes can spread within VGII independently of the

mitochondrial genotype. We had anticipated that in these crosses

the progeny would inherit mitochondria from a lower virulence

MATa parent (CBS1930 or LA584) but, as described above, in

fact both crosses demonstrated a higher rate of mitochondrial

inheritance from the MATa parent (25 to 30%), indicating that

mitochondrial inheritance is not strictly uniparental in this group.

Interestingly, unlike the CBS10090 x NIH312 outgroup cross

(Figure 7), both ingroup crosses produced progeny that remained

able to correctly tubularise their mitochondria in response to

phagocyte engulfment (Figures 9C&D and Figure S2F&G), which

most likely explains the ability of these recombinant progeny to

continue to proliferate rapidly within host cells.

Increased mitochondrial genome copy number or a higher

number of mitochondria can affect mitochondrial inheritance.

Similarly, the larger cell size of one parent might lead to an increased

cytoplasmic and/or mitochondrial contribution to progeny. For

instance, hyper-suppressive RHO mutants of S. cerevisiae exhibit

deletions in the mitochondrial genome and are ‘petite’ variants.

However, the S. cerevisiae mitochondrial genome replicates faster than

the wild type and consequently, when crossed with wild type, all

progeny inherit the mutant mitochondrion [48–50]. To test whether

such a phenomenon may account for the non-uniparental mito-

chondrial inheritance we observed during in-group crosses, we

measured the size of our parental strains under control conditions in

vitro and after macrophage passage. However, cell size does not

appear to be a contributing factor for changes in virulence (data not

shown). In addition, previously published data on mitochondrial

DNA copy number [21] showed no increase of mitochondrial genetic

information and hence makes it unlikely that a higher copy number

from R265 leads to a ‘leak’ from the a parent in those crosses.

Recombination of Mitochondrial Genomes in C. gattii
The surprising result of biparental mitochondrial inheritance in

the ingroup crosses (mitochondria inherited from a parent 70–

75% of the time and from the a parent 25–30% of the time), in

contrast to uniparental inheritance from only the a parent in

outgroup crosses, prompted us to further investigate the

unexpected phenotypes of progeny from the outgroup cross

between CBS10090 and NIH312. By utilising whole-genome

sequence data for the two parental strains and Progeny 5, which

had been made available as part of a larger sequencing project, we

found 440 mitochondrial single nucleotide polymorphisms (SNPs)

that differed between CBS10090 and NIH312. Progeny 5 shared

320 SNPs with CBS10090 and 120 with NIH312. Aligning these

sites across the 34 kb mitochondrial genome showed that, with the

exception of a single SNP, all sites from a single parent formed

contiguous blocks (Figure 10A). Thus this pattern of polymor-

phisms represents very strong evidence for mitochondrial recom-

bination in Progeny 5 from the VGII x VGIII outgroup cross

CBS10090 x NIH312 (Figure 10B). In addition, by using three

mitochondrial markers to assess the inheritance of mitochondrial

DNA in the VGII x VGII crosses, we identified four examples of

recombinant mitochondrial genotypes (Figure 10C). These find-

ings support previous evidence for mitochondrial recombination

both in C. neoformans [27,51] and C. gattii [52].

Discussion

In this study we conducted a systematic analysis to test the

potential spread of hypervirulence in C. gattii. In crosses between a

hypervirulent VGII strain and strains from a different clade,

VGIII, it appears that a mitochondrial genotype originating from

within the outbreak is necessary, but not sufficient, to confer

hypervirulence. Thus simple transmission of a mitochondrial

lineage is unlikely to spread outbreak traits to a new population of

C. gattii.

Figure 6. Macrophage interaction of progeny from outgroup crosses between CBS10090 and NIH312. Progeny were tested for their
ability to A) proliferate and B) form tubular mitochondria within macrophages and the results were compared to their respective parental strains. The
a parent (NIH312) shows a low IPR, while the a parent (CBS10090) shows a high IPR. In A), bars are shaded according to whether they are haploid
blastospores (light grey), haploid recombinants (mid grey) or diploids (black) and the shaded red area indicates the standard error in the IPR of the
hypervirulent parent. In B), the light blue line indicates the level of tubularisation in vitro for the hypervirulent parent, and the dark blue line indicates
the corresponding parental level of tubularisation within macrophages. There is clear evidence for misregulated tubularisation in most of the
progeny arising from this cross. Asterisks indicate significant differences between strains compared to the high IPR parental strain (R265) (* p,0.05, **
p#0.01, *** p#0.001).
doi:10.1371/journal.pgen.1003771.g006
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We generated multiple sets of VGII x VGIII F1 progeny, one

from a VGII a x VGIII a mating, and the other from a VGII a x

VGIII a mating. The first conclusion from the progeny sets was

that germination was very infrequent (less than 1%, 0/163 spores),

supporting the hypothesis that these molecular types are cryptic

species manifesting strong reproductive barriers. To circumvent

this, isolation of progeny had to be done without individual spore

dissections (selecting probable progeny from spore-dense regions);

resulting in a need to clearly type all progeny using a multilocus

sequence typing (MLST) or PCR-RFLP based approaches.

Figure 7. Macrophage interaction of progeny from marked outgroup crosses YL4 x 97/433, AIg189 x JF101 and AIg254 x JF109.
Progeny were tested for their ability to proliferate (A–C) and form tubular mitochondria within macrophages (D–F) and the results were compared to
their respective parental strains. A–C) The shaded red area indicates the standard error in the IPR of the hypervirulent parent. In (D–F), the light blue
line indicates the level of tubularisation in vitro for the hypervirulent parent, and the dark blue line indicates the corresponding parental level of
tubularisation within macrophages. Asterisks indicate significant differences between strains compared to the high IPR parental strain (R265)
(* p,0.05, ** p#0.01, *** p#0.001).
doi:10.1371/journal.pgen.1003771.g007
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Several independent studies have shown that, based on

sequence analysis, there is no allelic exchange observed between

the four molecular types of C. gattii, leading to a hypothesis that

they are independent species within the pathogenic Cryptococcus

species complex and adhere to a phylogenetic species concept

[11,24,33,34,53]. The results presented in this manuscript

demonstrate that there are clear reproductive barriers between

isolates from two of the molecular types examined, VGII and

VGIII. This reproductive barrier is post-zygotic, and supported

with examples from both VGII a x VGIII a as well as VGII a x

VGIII a crosses. Therefore, these two lineages appear to also

adhere to a biological species concept. Specifically, analysis of

progeny from such crosses showed predominantly hybrid diploids,

followed by mitochondrial exchange strains (i.e., blastospores), and

finally only 1–2/34 (3–6%) haploid recombinants. This post-

zygotic barrier parallels studies examining progeny isolated from

sexual crosses between the related species Saccharomyces cerevisiae

and S. bayanus, whereby viable spores from tetrads were found at a

frequency of about 1/10,000 [45]. Furthermore, similar post-

zygotic barriers between closely related species from within both

the Microbotryum and Neurospora genera and AD hybrids in C.

neoformans result in low levels of viable progeny [54–56].

The finding that a majority of progeny are diploid hybrids is

intriguing, as it suggests that, both environmentally and clinically,

there may be a potential for inter-molecular type hybrids, such as

VGII x VGIII hybrids, to occur. This would parallel several

seminal studies examining both C. neoformans var. neoformans/C.

neoformans var. grubii (AD) and C. neoformans/C. gattii (BD and AB)

hybrids [41,54,57–62]. These studies show that the hybrids are

able to infect hosts, as several are clinical in origin, and our IPR

assays, at a minimum, suggest that VGIII x VGII diploid hybrids

can be virulent.

Mitochondrial inheritance in C. neoformans, as in most eukary-

otes, is uniparental [63,64], with progeny inheriting mitochondria

from the MATa parent [29]. However, environmental factors such

as high temperature and UV irradiation can lead to biparental

inheritance and recombination of mitochondrial DNA [65]. Our

data indicate that, at least within VGII, inheritance of mitochon-

dria from either parent (rather than only one) can occur relatively

frequently (25–30%), even in the absence of such stresses, and that

recombination can occur for the mitochondrial genome. Previous

studies have shown that while a-a mating leads to uniparental

inheritance, regulated by the mating type-specific homeodomain

genes SXI1a and SXI2a, a-a mating has biparental inheritance,

which enables increased mitochondrial genome recombination

[66]. Other recent studies have demonstrated roles for genes not

within the mating type locus in the control of uniparental

inheritance [67]. Furthermore, in a congenic VGII MATa/MATa
strain pair in the R265 background, uniparental inheritance was

observed [68]. This supports an interesting hypothesis whereby a-

a mating may contribute to the formation of recombinant

mitochondrial genomes with higher predispositions for virulence,

possibly explaining the hypervirulence among specific VGII

genotypes.

In addition to demonstrating biparental organelle inheritance in

C. gattii, we provide clear genomic evidence for mitochondrial

recombination following mating, in support of previous MLST/

AFLP data that suggested the occurrence of mitochondrial

recombination at the population level [38,52]. Together, these

data suggest that there may be less stringent control over

Figure 8. Molecular characterisation of progeny from ingroup crosses. A) Allele distribution in progeny of crosses R265 x CBS1930 and B)
R265 x LA584. Blue R = allele from R265; yellow C = allele from CBS1930; yellow L = allele from LA584; green R/C = heterozygous for both alleles. Lines
delineate sets of markers located on the same chromosome. Loci are provided as gene names or as the four digits of one primer used for
amplification (ALID####, Table 3).
doi:10.1371/journal.pgen.1003771.g008
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uniparental mitochondrial inheritance by the mating type locus in

the C. gattii VGII lineage as compared to much stricter uniparental

mitochondrial inheritance in C. neoformans.

Whilst the overall populations of strains still showed a significant

correlation between intracellular proliferation and mitochondrial

tubularisation (Figure S2E), one striking observation from these

crosses was the high frequency of ‘misregulated’ mitochondria, in

which mitochondrial tubularisation (which, in outbreak strains, is a

response to the stressful environment of the host cell involving

mitochondrial fusion) occurs even under control growth conditions

(Figure 5). Mitochondrial morphology is regulated by proteins

encoded within the nuclear genome and, in S. cerevisiae, fusion

events are controlled by a protein complex consisting of Fzo1p,

Mgm1p, and Ugo1p [69–72]. Thus effective interaction of this

machinery might be interrupted by non-compatible mitochondrial

and nuclear genomes, reducing the ability of recombinant progeny

to regulate virulence traits.

In contrast, for crosses between parents within the VGII clade,

hypervirulence traits appear to spread easily and are no longer

strictly dependent on the presence of a mitochondrial genotype

originating from within the outbreak. Thus many, perhaps all,

VGII mitochondria are capable of tubularising under host

conditions and driving rapid intracellular proliferation, and

therefore virulence. This presumably reflects the compatibility of

nuclear and mitochondrial ‘cross-talk’ across VGII genotypes,

allowing mitochondrial morphology to be correctly regulated in

recombinant progeny. This may explain why multiple, distinct

outbreaks of disease have all been caused by VGII isolates that

differ in their genotype [11].

Our experimental model indicates that hypervirulence in C.

gattii is a complex, multigenic trait, requiring regions of the

mitochondrial genome and regions of the nuclear genome to

confer hypervirulence, which can be attained by a variety of

genetic combinations after sexual mating. Thus, there are

potentially multiple routes by which such traits could disperse

through the C. gattii population, suggesting that surveillance efforts

should consider the possibility of independent outbreaks caused by

distinct lineages of this pathogen. Our studies also provide

phenotypic and molecular evidence that the VGII and VGIII

molecular types of C. gattii are distinct species, separated by post-

zygotic reproductive barriers. Finally, we provide evidence that

mitochondrial inheritance in this species is more complex than

currently appreciated, with both biparental mitochondrial inher-

itance and mitochondrial recombination being observed.

Figure 9. Macrophage interaction of progeny from ingroup crosses CBS1930 x R265 and LA584 x R265. Progeny were tested for their
ability to proliferate (A and B) and form tubular mitochondria within macrophages (C and D) and the results were compared to their respective
parental strains. (A and B) The shaded red area indicates the standard error in the IPR of the hypervirulent parent. In (C and D), the light blue line
indicates the level of tubularisation in vitro for the hypervirulent parent, and the dark blue line indicates the corresponding parental level of
tubularisation within macrophages. Asterisks indicate significant differences between strains compared to the high IPR parental strain (R265)
(* p,0.05, ** p#0.01, *** p#0.001).
doi:10.1371/journal.pgen.1003771.g009
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Materials and Methods

Yeast Strains, Mammalian Cells and Growth Conditions
Cryptococcus gattii strains (Table 1 and Table 2) used in this study

were cultured in liquid or agar YPD media (1% peptone, 1% yeast

extract, 2% D-(+)-glucose) for 24 h at 25uC rotating at 20 rpm

prior to experiments [73]. Mammalian J774 cells were grown as

described previously [73].

Crosses
For outgroup crosses between VGII a CBS10090, VGII a

R265, VGIII a B4546, and VGIII a NIH312, mating assays were

conducted on V8 media (5% V8 juice, 0.5 g/L KH2PO4, 4%

agar; pH = 5) to generate spores for progeny analyses. Isolates

were incubated at room temperature in the dark for 2–4 weeks in

dry conditions. Fertility was assessed by light microscopy to

identify basidiospore formation at the periphery and surface of the

mating patch. To collect progeny from the crosses, basidiospores

were isolated with a micromanipulator as described previously

with the slight modification that due to low germination rate, other

suspected resultant colonies were collected from areas where

groups of basidiospores were collected [74,75]. To summarize,

spore-dense regions were collected using a glass Pasteur pipette

and spread on a YPD agar plate. In total, the progeny set from the

CBS10090 x NIH312 cross yielded 16 collected progeny and the

R265 x B4546 cross yielded 18 collected progeny. Progeny from

crosses YL4x97/433, AIg289xJF101 and AIg254xJF109 were

established as described above. For AIg289 x JF101 and AIg254 x

JF109, the cell mixture was plated onto YPD supplemented with

nourseothricin and G-418 (both at 100 mg/ml).

To derive haploid progeny (SP3-SP8), the diploid progeny were

passaged on YPD agar every 48 hours for 24 days (total 12

passages). A single colony from the previous passage was used to

initiate the next passage. FACS analysis was performed on five

colonies from every passage to determine the ploidy. Serial

passaging was stopped when cells from at least one of the five

colonies were found to be haploid. Cells from these haploid

colonies were used to grow overnight cultures in liquid YPD,

which were stored frozen at 280uC in glycerol and subsequently

used for MLST and virulence analyses.

Crosses between R265 and CBS1930 or LA584 were

established on V8 juice agar medium (pH unadjusted). Yeasts

were mixed on the plate and examined 2–4 weeks later for the

presence of basidia and basidiospore chains. Spores and

surrounding parental yeasts were transferred using a gel-loading

tip to YPD agar medium. Individual basidiospores were micro-

manipulated with a dissecting microscope. Genomic DNA from

progeny was prepared by disrupting cells in buffer (10 mM Tris-

HCl [pH 7.5], 10 mM EDTA, 0.5 M NaCl, 1% SDS)+K volume

chloroform with 425–600 mm glass beads, aided by two rounds of

vortexing and freezing at 220uC. After centrifugation, the DNA in

the supernatant was precipitated with an equal volume of

isopropanol. For preparing larger quantities of DNA, a CTAB-

based extraction buffer was used on lyophilized cells harvested

from 50 ml cultures [76].

Identification and Detection of Polymorphic Regions
between Strains

For the outgroup crosses sequence data for the MLST alleles of

the parental isolates were previously published (Table S1) [11,24].

For each F1 progeny isolate, DNA was isolated (Epicentre), and

genomic regions were PCR amplified (Table S2), purified

(ExoSAP-IT, Qiagen), and sequenced. Sequences from both

forward and reverse strands were assembled and manually edited

Figure 10. Mitochondrial recombination occurs in C. gattii
crosses. A) Progeny 5 from cross CBS10090 (VGII) x NIH312 (VGIII) has a
mixture of SNPs distributed from both strains. B) Mitochondrial genome
sequences of CBS10090 (top), Progeny 5 (middle) and NIH312 (bottom)
were aligned with Progressive Mauve [89]. Syntenic regions are marked
in different colors. Green: conserved in all genomes, yellow: conserved
in CBS10090 and Progeny 5 only, red: conserved in NIH312 and Progeny
5 only, white: unique to each genome. C) Four progeny from VGII
crosses (AIg23 from R265 x LA584; AIg36, AIg84 and AIg94 from R265 x
CBS1930) have mixtures of alleles from each parent. Locus 1373 was
amplified and sequenced, with the chromatogram used to illustrate the
A–G polymorphism. Locus 1921 and 1925 were amplified by PCR,
digested with restriction enzymes, and the products resolved on
agarose gels.
doi:10.1371/journal.pgen.1003771.g010
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using Sequencher version 4.8 (Gene Codes Corporation). Based

on the sequences of the parental strains, alleles of the progeny were

assigned to three distinct categories: exclusively from the a parent,

exclusively from the a parent, or heterozygous. Heterozygosity at

each allele was based on alignments with parental alleles and clear

observations of multiple positive nucleotide traces in regions that

differ between the two parental sequences, which are indicative of

two unique sequences (i.e., one from each parent) being analyzed.

Additionally, mitochondrial inheritance was assayed using ATP6

mitochondrial specific forward (ACTTGCGGCTGAATGA-

TAAAATCTAA) and reverse (GTGGAGATGTAATAAAGT-

GTGTCATG) primers, whereby the product (including the 59

UTR and part of the ORF) from the VGIII (a and a)

mitochondrial genome is larger than the product from the VGII

(a and a) mitochondrial genome [5,11].

For progeny from crosses R265 x CBS1930 and R265 x LA584,

polymorphic regions were identified in multilocus sequence typing

(MLST) data in GenBank and by sequencing fragments of the

CBS1930 genome. MLST differences between the strains were

used for three PCR-RFLP markers [24]. To identify other

polymorphic regions, a small genomic DNA library was

constructed from DNA of strain CBS1930. HindIII restriction

fragments were cloned into the HindIII site of plasmid pBluescript.

The ends of the inserts were sequenced, and the sequence

compared by BLASTn to the R265 strain genome database at the

Broad Institute [77]. Either single nucleotide polymorphisms

(SNPs) affecting restriction enzymes sites or with multiple

differences between the two strains were used for the design of

oligonucleotides primers for PCR amplification of alleles from

either parent. PCR reactions, digested with restriction enzyme

where necessary, were resolved on 16TAE agarose gels. Primer

sequences and details about the polymorphisms are in Table 3.

Sections of the mitochondrial genome were amplified and

sequenced from R265, CBS1930, and LA584 to identify a

polymorphism.

Analysis of nuclear and mitochondrial markers was conducted to

test if progeny were recombinant was conducted. The strains from

the cross between R265 and CBS1930 were assessed for 16 genetic

markers. One was the mating type phenotype and 14 were PCR

markers that amplified polymorphic parts of the nuclear genome.

The markers are located on eight of the 14 chromosomes of C. gattii

[77]. For the mitochondrial genome, the COX1 and COB1 genes

were amplified and sequenced. A single nucleotide polymorphism

was identified in intron 2 of COB1 (submitted as GenBank accessions

JX486912 and JX486913). Subsequently, the CBS1930 strain was

subject to Illumina genome sequencing, and the mitochondrial

genome analyzed for other differences between this strain and R265.

Two other regions were used to track the inheritance of the

mitochondrial genome in the VGII x VGII progeny.

Ploidy Determination by Fluorescence Flow Cytometry
Cells were processed for flow cytometry as described previously,

with slight modifications [54,78]. Briefly, cells were harvested from

YPD medium, washed once in phosphate-buffered saline (PBS)

buffer, and fixed in 1 ml of 70% ethanol overnight at 4uC. Fixed

cells were washed once with 1 ml of NS buffer (10 mM Tris-HCl

(pH 7.5), 250 mM sucrose, 1 mM EDTA (pH 8.0), 1 mM MgCl2,

0.1 mM CaCl2, 0.1 mM ZnCl2) and then stained with propidium

iodide (12.5 mg/ml) in 0.2 ml of NS buffer containing RNaseA

(1 mg/ml) at 4uC for 16 h. Next, 0.5 ml of stained cells were

diluted into 0.5 ml of 50 mM Tris-HCl (pH 8.0). Flow cytometry

was performed on 10,000 cells and analyzed on the FL1 channel

with a Becton-Dickinson FACScan (Duke University Medical

Center Flow Cytometry Core Facility).

Self-Filamentation Assays
Filamentation assays were conducted on V8 media (pH = 5) and

filamentation agar [79]. Isolates were incubated at room

temperature in the dark for 2–4 weeks in dry conditions.

Filamentation was assessed by light microscopic examination for

hyphae formation at the periphery and surface of the incubated

patches. All assays were conducted on both media types. If there

were no signs of filamentation after a four-week period, isolates

were scored as having no self-filamentation phenotype.

Table 1. Parental Cryptococcus gattii strains used in this study used for crosses.

Parental Strains Mating Type Molecular Type Source Additional Information Reference

R265 alpha VGIIa Human Clinical isolate (bronchial wash) from Duncan,
British Columbia, Canada

[9]

CBS1930 a VGII Animal Sick goat, Aruba [90]

CBS10090 alpha VGII Human Clinical isolate from immunocompromised
patient, Greece

NIH312 a VGIII Human Clinical isolate, USA

B4546 a VGIII Human Clinical isolate from spinal fluid of patient
with cryptococcal meningitis, USA

[90]

LA584 a VGII Human Clinical isolate, CSF, Colombia [91]

YL4 a VGII Possible progeny of 96/1120 x La55 [11]

97/433 alpha VGIII Clinical isolate from 17 year old female AIDS
patient

[54]

JF101 alpha VGIII crg1::NEO in NIH312 background [32]

AIR265a a VGII Wildtype congenic pair [68]

AIg289 a VGII bwc2::NAT fur1 in R265 background [68]

JF109 a VGIII crg1::NEO in B4546 background [32]

AIR265a alpha VGII Wildtype congenic pair [68]

AIg254 alpha VGII bwc2::NAT in R265 background [68]

doi:10.1371/journal.pgen.1003771.t001
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Cryptococcal Intracellular Proliferation Assay and
Mitochondrial Staining

Macrophages were infected with yeast cells and intracellular

proliferation monitored as previously described [80]. Cryptococcal

mitochondrial morphology was determined as described previous-

ly [11]. In brief, to determine the intracellular proliferation rate

(IPR) of individual strains following phagocytosis, J774 macro-

phage cells were exposed to cryptococcal cells that were opsonized

with 18B7 antibody (a kind gift from Arturo Casadevall) for 2 hr as

described previously [73]. Each well was washed with PBS in

quadruplicate to remove as many extracellular yeast cells as

possible and 1 ml of fresh serum-free DMEM was then added. For

time point T = 0, the 1 ml of DMEM was discarded and 200 ml of

sterile dH2O was added into wells to lyse macrophage cells. After

30 minutes, the intracellular yeast were released and collected.

Another 200 ml dH2O was added to each well to collect the

remaining yeast cells. The intracellular yeast were then counted

with a haemocytometer. For the subsequent five time points

(T = 18 hrs, T = 24 hrs, T = 48 hrs, T = 72 hrs), intracellular

cryptococcal cells were collected and counted. For each strain

tested, the time course was repeated at least three independent

times, using different batches of macrophages. The IPR value was

calculated by dividing the maximum intracellular yeast number by

the initial intracellular yeast number at T = 0. We confirmed that

Trypan Blue stains 100% of the cryptococcal cells in a heat-killed

culture, but only approximately 5% of cells from a standard

overnight culture. The mitochondrial morphology assays were

conducted in a similar way to those in previous studies, with

modifications [21]. C. gattii cells were grown overnight at 37uC in

DMEM untreated or isolated from macrophages 24 hr after

infection. The cells were harvested, washed with PBS twice and re-

suspended in PBS containing the Mito-Tracker Red CMXRos

(Invitrogen) at a final concentration of 20 nM. Cells were

incubated for 15 min at 37uC. After staining, cells were washed

three times and re-suspended in PBS. For each condition, more

than 100 yeast cells per replicate for each of the tested strains were

chosen randomly and analysed. To quantify different mitochon-

drial morphologies, images were collected using a Zeiss Axiovert

135 TV microscope with a 1006 oil immersion Plan-Neofluar

objective or a Nikon Eclipse Ti Plan Apo VC 606 oil immersion

objective. Both fluorescence images and phase contrast images

were collected simultaneously. Images were captured with identical

settings on a QIcam Fast 1394 camera using the QCapture Pro51

version 5.1.1 software. All images were processed identically in

ImageJ and mitochondrial morphologies were analysed and

counted blindly [11]. IPR and tubularisation data were analysed

for statistically significant differences using one-way ANOVA

analysis with multiple comparisons by Tukey Honestly Significant

Difference (HSD) posthoc test. A p-value of ,0.05 after controlling

for multiplicity was considered to be statistically significant.

Illumina Sequencing
Genomic DNA from C. gattii strains NIH312, CBS10090, and

progeny 5 from the cross between NIH312 and CBS10090 was

isolated with the EpiCentre MasterPure Yeast DNA Purification

Kit according to a modified version of the instruction manual.

Briefly, the strains were grown in liquid YPD media for 24 h at

25uC rotating at 20 rpm. Cells from 3 ml of culture were

harvested by centrifugation at 17,0006 g for 5 minutes. Cells

were lysed in 300 ml of Yeast Cell Lysis solution by mechanical

disruption with 0.1 mm silica spheres (FastPrep Lysing Matrix,

MP Biomedicals) twice for 30 seconds at 6,800 rpm in a

Precellys24 and incubation at 65uC for 15 minutes. Samples were

cooled down on ice for 5 minutes and proteins removed by

vortexing with 150 ml of MPC Protein Precipitation Reagent and

following centrifugation for 10 minutes at 17,0006 g. DNA was

recovered with 500 ml isopropanol and centrifugation at 17,0006
g for 10 minutes. DNA was purified by RNase A treatment for

60 minutes at 37uC followed by phenol:chloroform extraction and

ethanol precipitation. DNA yield and quality was determined by

spectrophotometry. 2 mg of genomic DNA were used for library

preparation: DNA was fragmented to 150–500 bp using Covaris

shearing and processed with the TruSeq DNA Sample Prep

Kit (Illumina) according to instructions, purification steps

were performed with Agencourt AMPureXP magnetic particles

(Beckham Coulter) on a magnetic stand (AmBio). Whole genomes

Table 2. Crosses conducted for the study and resulting
progeny.

Crosses Progeny

R265 x B4546 Progeny 1–18

SP3-SP8

CBS10090 x NIH312 Progeny 1–16

R265 x LA584 AIg23

AIg24

AIg26

AIg29

AIg31

AIg34

AIg35

R265 x CBS1930 AIg37

AIg38

AIg40

AIg41

AIg42

AIg43

AIg47

AIg49

AIg52

AIg82

AIg83

AIg91

AIg92

AIg104

AIg106

YL4 x 97/433 SP108

SP110

SP111

SP128

SP129

SP130

AIg289 x JF101 AIg419-424

AIg254 x JF109 AIg430-432

doi:10.1371/journal.pgen.1003771.t002
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were sequenced on an Illumina HiSeq2000 at the MRC Clinical

Science Centre, Imperial College London (UK).

Illumina Sequence Analysis
Alignment and SNP calling parameters were initially optimized.

The nuclear and mitochondrial genome sequences and feature

files for C. gattii isolate R265 (VGII) were downloaded from

http://www.broadinstitute.org/ (GenBank project accession num-

ber AAFP01000000). Illumina reads were aligned to the genome

sequence using Burrows-Wheeler Aligner (BWA) v0.5.9 [81] with

default parameters and converted to pileup format using Samtools

v.0.1.18 [82]. To act as a control for sequencing, alignment and

Table 3. Markers used for analysis of progeny from R265 x CBS1930 and R265 x LA584.

Chr.
Supercontig number and
position(s) Primer name Sequence of primer (59-39) Detection

I 18 at ,22,245–44,4480 (MAT) N/A N/A; MATa or MATa Phenotype

M 13 at 174,953 (PLB1) JOHE14974 CTCTCATTGTTCGCCGCTACT NdeI

JOHE14975 GGAAGCCGAGGTCTGATTTGG

F 4 at 972,428 (TOR1) JOHE15471 TTCGGTACCATCCTGAGTTAT MseI

JOHE15472 TTAGCCAAGGTCTTCCCACTG

G 5 at 966,811 (URA5) ALID1356 GTACTTCCTGACCTCTCGC BsrGI

ALID1357 GAGCTCATAAGCCAGTAG

M 13 at 319,262–319,703 ALID1376 AATTTTGGAAGAATCTATGG CBS1930

ALID1378 TCTTCAACCATTCAGATGTG

ALID1377 AATTTTGGAAGAATCTATTC R265

ALID1379 TCTTCAACCATTCAGATGTA

N 14 at 520,464–520,467 ALID1380 TGGCTCTGCAAGGTCAAG Both alleles

ALID1381 CCATCATTAACACGCTCTGC CBS1930

ALID1382 CCATCATTAACACGCTATGA R265

G 5 at 453,154–453,169 ALID1383 ACGGTCTCCATCTCGAAC Both alleles

ALID1384 CGCTTCCTGCGAGCCAGC CBS1930

ALID1385 TTGCTGCTAGCCAGCTTC R265

C 8 at 674,370 ALID1386 ATTTACCGGAGAAGTTCGTC SacII

ALID1387 GGAGCAATGGAAACTCGGTC

G 5 at 252,641 ALID1388 ATGGAGAGGTCAACAAGC HpyCH4V

ALID1389 TCTCAAAGCAAGTCGGTG

C 10 at 239,575 ALID1390 CCACTAATCGACTGGTCAGC BspHI

ALID1391 CAATAACGCAATCATAGACC

J 21 at 35,753 ALID1392 ATTCTGGTCGTGCGAGACGC Sau3AI

ALID1393 AGTCCGGGTCAAGAGTCACC

F 4 at 189,077 ALID1394 AGCTGATATAGAAGCTCTCC SphI

ALID1395 TAAGCTAGACGATGTGAAGG

G 5 at 1,102,776 ALID1396 TTTCCCGACTAATGTGATGG NdeI

ALID1397 AGTCATTAGCAGCCGAGCTG

H 6 at 915,271 ALID1398 GGCTAACATCACTGTTGTAG AluI

ALID1399 ATAAGGGTGACCTGAAGCTG

H 6 at 707,230 ALID1400 CGAGAGGAGTGTCGTCTTAC MspI

ALID1401 AAGAGCAGACTCGGGATCAG

mt 29 ALID1365 AACTACGGATGGATGATTCG Sequencing with
ALID1373

ALID1373 AGTGAAGTGAGAAGAATCGG

mt 29 ALID1921 CTACTTCTAGCTATGGTAGG MseI

ALID1922 ACACTATCTCGCATGTGTAG

mt 29 ALID1925 CAAGTATGCCCTCTCTGG TaqI

ALID1926 TTGCTTAAAGGAGTGGAC

Chromosome (Chr.) refers to that defined for strain WM276. Supercontig and the position(s) refers to the R265 genome sequence. Polymorphisms were detected as a
phenotype (MATa or MATa) by crossing, as PCR products specific for alleles from each parent, by digestion of PCR products with the restriction enzymes listed, or by
sequencing a PCR product. JOHE primers are from [24].
doi:10.1371/journal.pgen.1003771.t003
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SNP calling, we resequenced the reference strain R265. We used a

False Discovery (FDR) approach [83] to test our SNP-calling

method, which we set at a minimum required depth of four reads,

with 90% disagreeing from the reference base and agreeing with

each other. First, we randomly modified 63,193 and 698,535

nucleotides within the reference sequence, corresponding with the

maximum number of SNPs identified within the VGII group and

within any of our C. gattii isolates, respectively. We aligned the

reads of R265 to these two altered genome sequences and called

SNPs using our chosen parameters. We identified 99.32% and

99.26% of true positives, whilst only calling 3553 (5.6%) and 3363

(0.48%) false positives or genuine discrepancies with the reference

sequence respectively. For analysis we used all SNPs that were

covered by $4 reads in all isolates, leaving a total 740

mitochondrial sites. To ensure that these sites could not have

been heterogeneous in the progeny sequence we examined the

allele frequencies at each variant site and found that each site had

greater than 95% agreement with the called SNP. We simulated

100 bp reads with 0.01% uniform error for 2006 coverage from

each parental mitochondrial genotype and used them in a single

combined BWA alignment and SNPs calling protocol as before.

We detected only seven sites that show shared differences from

the reference sequence of R265. The other SNPs were not

detected because they did not reach the 90% agreement

threshold.

De Novo Assemblies of Mitochondrial Genomes
Two to four million 100 bp Illumina paired end reads were

assembled with velvet (version 1.2.08) [84]. Redundant assembly

runs with varying k-mer lengths were performed for each strain,

and each time resulted in identical circular contigs, which only

differed in lengths of overlapping ends.

Chromosomal Ploidy Analysis of VGII x VGIII Progeny
Supercontigs of C. gattii R265 were obtained from Broad

Institute (http://www.broadinstitute.org), and grouped in chro-

mosomal context by alignment to C. gattii WM276 chromosomes

[77] with MUMmer (version 3.23) [85,86]. The resulting tiled

R265 chromosomes served as reference in downstream analyses.

Ploidy of EJB and SP strains was assessed by read coverage and

allele frequencies at variant sites. After mapping with Bowtie 2

(version 2.1.0) [87], read coverages were calculated and plotted

with CNV-seq [88]. C. gattii WM276 was used as mapping

genome, a theoretical VGII x VGIII diploid of equally pooled

R265, B4546 reads as reference, and R265 x B4546 progeny

(Progeny and SP strains) reads as testing samples, respectively.

Allele frequencies of variant sites in Progeny and SP progeny

were calculated after Bowtie 2 read mapping to R265 chromo-

somes, and variant calling with samtools/bcftools from the

samtools package (version 0.1.18 (r982:295)) [82] Allele frequen-

cies were extracted from DP4 fields of VCF output, and nucleotide

variant ratios calculated for each position by division of reads

depth/number of variant bases. A separate mapping of R265

reads was performed as control, and observed positions removed

as background noise from Progeny and SP variant calls. Additional

details on the ploidy analyses are available in the supplementary

information (Text S1).

Alignment of Mitochondrial Genomes
To assess mitochondrial recombination, genomes of CBS10090

and NIH312 were compared to CBS10090 x NIH312 progeny

strain Progeny 5. Sequences were aligned, and corresponding

regions visualized with Progressive Mauve (version 2.3.1) [89].

Additional details on the analysis of mitochondrial genomes are

available in the supplementary information (Text S1).

Supporting Information

Figure S1 Ploidy analysis in B4546 x R265 progeny. A) Copy

number variations in individual chromosomes were examined by

read coverage plots with CNV-seq. Illumina reads of testing strains

(Progeny, restored haploid SP progeny of R265 and B4546) were

mapped to WM276, and read coverage compared to a reference

sample of equally pooled reads of R265 and B4546. Y-axis: log2

coverage ratios of individual testing strains and the reference. Log2

ratios of approx. 0 correspond to diploid chromosomes, ratios of

approx. 0.5 to triploid chromosomes respectively. X-axis: the 14

chromosomes of each strain are represented in different colors. B)

Mean chromosomal allele frequencies at variant sites in R265 x

B4546 progeny. Variant base ratios have been calculated by

division of the number of variant bases/read depth at each

position. Columns contain mean variant ratios per chromosomes

in EJB and SP strains. ‘‘na’’ indicates ratios in chromosomes with

less than 100 variants, which were presumably detected due to

sequencing errors.

(TIF)

Figure S2 Correlation analysis of intracellular proliferation and

yeast mitochondrial tubularisation within macrophages for crosses.

A) B4546 x R265, B) CBS10090 x NIH312, C) YL9 x 97/433, D)

AIg289 x JF101, E) AIg254 x JF109, F) CBS1930 x R265, G)

LA584 x R265 and H) all parental strains and progeny.

(TIF)

Table S1 Genbank accession numbers for MLST alleles used

and previously published for isolates R265, CBS10090, NIH312

and B4546.

(DOCX)

Table S2 MLST primers used for analysis of outgroup cross

progeny.

(DOCX)

Text S1 Additional information on ploidy and mitochondrial

genome analyses.

(DOCX)
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