SUMMAND ABSORBING SUBMODULES OF A MODULE OVER A SEMIRING

ZUR IZHAKIAN, MANFRED KNEBUSCH, AND LOUIS ROWEN

Abstract

An R-module V over a semiring R lacks zero sums (LZS) if $x+y=0 \Rightarrow$ $x=y=0$. More generally, a submodule W of V is summand absorbing in V if $\forall x, y \in$ $V: x+y \in W \Rightarrow x \in W, y \in W$. These arise in tropical algebra and modules over idempotent semirings. We explore the lattice of summand absorbing submodules of a given LZS module, especially those that are finitely generated, in terms of the lattice-theoretic Krull dimension, and describe their explicit generation.

Contents

1. Introduction 1
2. Preliminary results 4
3. The lattice $\mathrm{SA}(\mathrm{V})$ 11
4. SA_{f}-hereditary modules with SA-Kdim 18
5. The height filtration 20
6. Primitive SA_{f}-modules 23
7. Generating SA-submodules by use of additive spines 24
8. Halos and additive spines in R-modules 28
9. The posets $\mathrm{SA}(V), \Sigma \mathrm{SA}(V)$ and $\Sigma_{f} \mathrm{SA}_{f}$ in good cases 31
References

1. Introduction

Throughout this paper, R is a semiring [2], and V is a (left) module (sometimes called "semimodule") over R; i.e., $(V,+)$ is a semigroup satisfying the familiar module axioms as well as $r 0_{V}=0_{R} x=0_{V}$ for all $r \in R, x \in V$. The zero submodule $\left\{0_{V}\right\}$ is usually written as 0 . We denote the set of all submodules of V by $\operatorname{Mod}(V)$. Since we cannot take quotient modules V / W over semirings, we also write $\operatorname{Mod}(V ; W)$ for the submodules of V containing W.

An R-module V over a semiring R lacks zero sums (where the term "zerosumfree" is used in [2]), abbreviated LZS, if

$$
\begin{equation*}
\forall x, y \in V: x+y=0 \Rightarrow x=y=0 . \tag{LZS}
\end{equation*}
$$

In this paper we continue the theory of LZS modules from [4], which applies immediately to tropical algebra and modules over idempotent semirings. Our results apply in particular

[^0]File name: SAsubmodules.
to additive semigroups (with neutral element), which can be viewed as modules over the semiring \mathbb{N}_{0} of natural numbers including zero.

The condition ((LZS) follows at once from the condition, called upper bound (ub), that $a+b+c=a$ implies $a+b=a$. (We take $a=0$.) In [4, §6] the obstruction in an R-module V to the ub condition was studied in terms of Green's partial pre-order, a binary relation \preceq (more precisely denoted \preceq_{V}) given by

$$
x \preceq y \quad \Leftrightarrow \quad \exists z \in V: x+z=y .
$$

This is a pre-order (also called a "quasi-ordering") on V; in other words, \preceq is reflexive ($x \preceq x$) and transitive ($x \preceq y, y \preceq z \Rightarrow x \preceq z$), but not necessarily antisymmetric. (Green's partial preorder is generated by the relations $0_{V} \preceq z$, since $x+z=y$ implies $x=x+0_{V} \preceq x+z=y$.)

To get a better understanding of this property, we introduce an equivalence relation \equiv on V as follows:

$$
x \equiv y \quad \Leftrightarrow \quad x \preceq y, y \preceq x .
$$

As observed after [4, Definition 6.1], \equiv is a congruence, implying $\bar{V}:=V / \equiv$ is again an R-module in the obvious way, with the induced operations $\bar{x}+\bar{y}=\overline{x+y}$ and $r \bar{x}=\overline{r x}$, where \bar{x} denotes the equivalence class of x. We have the well-defined partial ordering \leq on the R-module \bar{V} induced by \preceq :

$$
\bar{x} \leq \bar{y} \quad \Leftrightarrow \quad x \preceq y
$$

for any $x, y \in V$, which is compatible with addition and scalar multiplication.
Proposition 1.1 (4, Proposition 6.2]).
(i) The monoid \bar{V} is upper bound.
(ii) V is upper bound if and only if the congruence \equiv is trivial.

For $x \preceq y$ we want to examine those $z \in V$ such that $x \preceq z \preceq y$. For example, if $\alpha+\beta=1$, then $x \preceq \alpha x+\beta y \preceq y$, since $x=\alpha x+\beta x \preceq \alpha x+\beta y$ and $\alpha x+\beta y \preceq \alpha y+\beta y=y$.
Definition 1.2. A subset S of V is convex (in V) if for any $x, y, z \in V$:

$$
x \in S, y \in S, x \preceq z \preceq y \quad \Rightarrow \quad z \in S .
$$

It is easily seen that a set $S \subset V$ is convex in V iff S partitions into full equivalence classes (of \equiv), and the image \bar{S} in the partially ordered set \bar{V} is convex.

1.1. Summand absorbing submodules.

We turn to the main notion of this paper, examining the LZS condition in terms of a related property which we call SA.
Definition 1.3. A submodule W of V is summand absorbing (abbreviated $\boldsymbol{S A}$) in V if

$$
\begin{equation*}
\forall x, y \in V: x+y \in W \quad \Rightarrow \quad x \in W, y \in W \tag{SA}
\end{equation*}
$$

we then say that W is an $\boldsymbol{S A}$-submodule V. A submodule U of V is a Σ SA-submodule of V (or: an SA-sum in V) if $U=\sum_{i \in I} W_{i}$ for some family $\left(W_{i} \mid i \in I\right)$ of $S A$-submodules.

Remarks 1.4.

a) The R-module V is LZS iff 0 is an $S A$-submodule of V.
b) V is ub iff the semigroup $V_{y}:=\{x \in V: x+y=y\}$ is $S A$ (as an additive semigroup) for each $y \in V$.

We also recall the notion of a weak complement of a submodule W of V.

Definition 1.5 ([4, Definition 1.2]). A submodule T of V is a weak complement of W (in V), denoted $V=W \oplus_{w} T$, if $V=W+T$ and for every $w \in W \backslash\{0\}$ the intersection $(w+T) \cap T$ is empty.

Thus

$$
V=W \oplus T \quad \Rightarrow \quad V=W \oplus_{w} T
$$

although $V=W \oplus_{w} T$ does not necessarily imply that $V=T \oplus_{w} W$.
Lemma 1.6 ([4, Lemma 2.2]). Suppose that W is a submodule of an LZS module V. Then T is a weak complement of W, if and only if T is $S A$ with $T \cap W=0$.

Thus the SA property is a natural continuation of the research in [4]. The following result, proved in [4, Lemma 2.3], leads to a theory of decompositions in tropical algebra and related structures, much stronger than the classical theory, since one gets unique decompositions.

Lemma 1.7. Suppose V has an SA-submodule T. Then any decomposition of V descends to a decomposition of T, in the sense that if $V=Y+Z$, then $T=(T \cap Y)+(T \cap Z)$.

Accordingly, we are led to study SA-submodules in their own right, particularly when they are finitely generated.
$\mathrm{SA}(V)$ denotes the poset consisting of all SA-submodules of V, partially ordered by inclusion. We also write $\mathrm{SA}(V ; W)$ for the SA-submodules of V containing W. SA_{f} denotes the finitely generated SA-submodules. The set of all SA-sum submodules is denoted as $\Sigma \mathrm{SA}(V)$, regarded again as a poset by the inclusion relation (containing $\mathrm{SA}(V)$ as a sub-poset). $\Sigma \mathrm{SA}_{f}$ is the set of all sums of finitely generated SA-submodules.

Proposition 1.8 ([4, Proposition 5.7]). A submodule W of V is in $\mathrm{SA}(V)$ iff W is a union of equivalence classes and \bar{W} is $S A$ in \bar{V}.
In other words, the elements of $\mathrm{SA}(V)$ are just the convex submodules of V under the relation \preceq. We denote the convex hull $\operatorname{conv}_{V}(W)$ of an R-submodule W of V more concisely as \widehat{W}.

Any family $\left(W_{i} \mid i \in I\right)$ in the poset $\mathrm{SA}(V)$ has the infimum $\bigcap_{i \in I} W_{i}$ and the supremum $\left(\sum_{i \in I} W_{i}\right)^{\wedge}$ in $\mathrm{SA}(V)$, and so $\mathrm{SA}(V)$ is a complete lattice (in contrast to $\Sigma \mathrm{SA}(V)$, cf. Remark (2.10) below. Furthermore, we shall show in Proposition 3.1 that $\mathrm{SA}(V)$ is a modular lattice. Accordingly many tools of classical module theory become available.

The first part of the paper ($\$ 2-\$ 3)$ covers the general theory of SA-submodules. In \S_{2} we continue the theory of [4], and introduce decompositions of SA-modules, called "SAdecompositions," proving the following results:
Theorem 2.2. Assume that W and T are submodules of V with $W+T=V, W \cap T=0$, and furthermore, that T is an SA-submodule of V. Then $V=W \oplus_{w} T$.
Theorem 2.13. Any R-module V has at most one SA-decomposition $\left(T_{i} \mid i \in I\right)$, where all T_{i} are SA-indecomposable. This is the finest SA-decomposition of V.
Theorem 2.16. Assume that W and T are submodules of V with $T \in \operatorname{SA}(V), W+T=V$, $W \cap T=0$, (whence $V=W \oplus_{w} T$ by Theorem (2.2). Let $\left(v_{\lambda} \mid 1 \leq \lambda \leq d\right)$ be a system of generators of V. Write $v_{\lambda}=w_{\lambda}+t_{\lambda}$ with $w_{\lambda} \in W, t_{\lambda} \in T$. Then $\left(t_{\lambda} \mid 1 \leq \lambda \leq d\right)$ is a system of generators of T.
Theorem 2.18. The $S A$-decompositions of R correspond uniquely to the complete orthogonal systems of idempotents of R.

In $₫ 3$ we develop a structure theory of SA-submodules along the classical lines of the socle and various analogs of dimension theory, including SA-Kdim, which is Krull dimension in the sense of [3] (or, more precisely, [5), but based on SA-submodules. The theory is made more explicit in $\$ 3.2$ by use of SA-uniform submodules and the SA-uniformity dimension (Definition 3.28), described in Theorem 3.30.

In the second of the paper (§4-§6) we exhibit a reasonably broad class of R-modules V, over an arbitrary semiring R, called finitely SA-accessible, for which we can obtain some stronger results. We say that V is SA_{f}-hereditary if submodules of SA_{f}-submodules are SA_{f}-submodules. Those SA_{f}-hereditary modules with SA_{f}-Kdim, called SAF-accessible, are examined in $\mathbb{4}$, and put to use in $\$ 5$ and $\S 6$, where the height of a module is defined in terms of the Krull dimension, and decisive results are obtained for modules in terms of their height.

In the third part of the paper ($\$ 7-\$ 9)$ we study generation of SA-submodules. $\$ 7$ brings in a somewhat technical condition, called spines on R, built from halos, which permit rather efficient generation of modules, cf. Theorem 7.10, and these are presented over V in $\mathbb{8} 8$. One main result:
Theorem 8.3. Assume that S is an additive spine of an R-module V. Then every $S A$ submodule W of V is generated by $W \cap S$, and moreover $W \cap S$ is an additive spine of W. For rings, this specializes to:
Theorem 7.8. Assume that S is a set of generators of a (left) R-module V, and M is an additive spine of R. Then any $S A$-submodule W of V is generated by the set $W \cap(M S)$.
An application to matrices is given in Theorem 7.14, and more generally to monoid semirings in Theorem 7.17 .

In $\oint 9$ we obtain rather satisfactory results about the SA -submodules and the $\Sigma \mathrm{SA}$ submodules of a finitely generated module V over a semiring R which has a finite additive spine. The main reason is that in this case all SA-submodules of V are finitely generated.

2. Preliminary results

We make a fresh start, reworking easy facts from [4, §4] in a slightly different way which fits better into the present chain of arguments than a mere citation of parts of 4 would do. Our goal is to compare different "weak" decompositions¹ of V into SA-submodules.

2.1. Three basic principles.

For basic facts on SA-submodules we refer to [4], now being content to recall three general principles from that paper.
A) If $f: V \rightarrow V^{\prime}$ is an R-linear map between R-modules and W^{\prime} is an $S A$-submodule of V^{\prime} then (clearly) $f^{-1}\left(W^{\prime}\right)$ is $S A$ in V.
Using this principle we immediately see that if V is LZS and W is a direct summand of V, i.e., $V=W \oplus T$, then W is in $\mathrm{SA}(V)$, since W is the kernel of a projection $p: V \rightarrow V$ with $p(V)=T$. (But usually an R-module V lacking zero sums has many more SA-submodules than direct summands.) We note in passing that for this conclusion it suffices to assume that T (instead of V) is LZS.

[^1]B) If $\left(W_{i} \mid i \in I\right)$ is a family of $S A$-submodules of V then (evidently) $\bigcap_{i \in I} W_{i}$ is $S A$ in V. If the family $\left(W_{i}\right)$ is upward directed, i.e., for $i, j \in I$ there exists $k \in I$ with $W_{i} \subset W_{k}$, $W_{j} \subset W_{k}$, then also $\bigcup_{i \in I} W_{i}$ is in $\mathrm{SA}(V)$.
C) A subset S containing 0_{V} is convex in V if and only if S is $S A$ [4, Lemma 6.6].

Our paper [4] contains various facts about weak complements, but more can be done. Our results below are rooted in analyzing the situation where both $V=W \oplus_{w} T$ and $V=T \oplus_{w} W$ hold, cf. Definition 1.5 ,

Theorem 2.1 ([4, Lemmas 2.1 and 2.2]). Assume that W is a submodule of V which is $L Z S$, and that T is a weak complement of W in V. Then the module T is in $\mathrm{SA}(V)$. If moreover T also is $L Z S$, then V is $L Z S$.

Proof. The first assertion is by Lemma 1.6. Assume that $v_{1}, v_{2} \in V$ and $v_{1}+v_{2}=t \in T$. Then $v_{i}=w_{i}+t_{i}$ with $w_{i} \in W, t_{i} \in T \quad(i=1,2)$. By adding we obtain

$$
\left(w_{1}+w_{2}\right)+\left(t_{1}+t_{2}\right)=t
$$

By Definition 1.5 this implies $w_{1}+w_{2}=0$ and $t_{1}+t_{2}=t$. Since W is LZS, it follows that $w_{1}=w_{2}=0$, and so $v_{i}=t_{i} \in T$. Thus T is in $\mathrm{SA}(V)$.

If T is LZS and $t=0$, i.e. $v_{1}+v_{2}=0$, we obtain from $t_{1}+t_{2}=0$ that $t_{1}=t_{2}=0$, whence $v_{1}=v_{2}=0$. So V is LZS.
Theorem 2.2. Assume that W and T are submodules of V with $W+T=V, W \cap T=0$, and furthermore, that T is an $S A$-submodule of V. Then $V=W \oplus_{w} T$.
Proof. Let $w \in W \backslash\{0\}, t \in T$, and suppose that $w+t \in T$. Then $w \in T$ since T is SA in V. We conclude that $w \in T \cap W=\{0\}$, a contradiction. Thus $(w+T) \cap T=\emptyset$.
Lemma 2.3. Assume that W, T, U are submodules of V, such that $V=W \oplus_{w} T$ and $V=$ $W+U$. Then $T \subset U$.
Proof. The module T is in $\mathrm{SA}(V)$ (Theorem 2.1). Thus $V=W+U$ implies that

$$
T=(T \cap W)+(T \cap U)
$$

But $T \cap W=\{0\}$, whence $T=T \cap U$, i.e., $T \subset U$.
Theorem 2.4 (Uniqueness of weak complements, cf. [4, Corollary 2.5]). Assume that $V=$ $W \oplus_{w} T$ and $V=W \oplus_{w} U$. Then $T=U$.
Proof. By Lemma 2.3 we have $T \subset U$ and $U \subset T$.
Theorem 2.5. Assume that W and T are submodules of V with $W+T=V$ and $W \cap T=0$, and furthermore that both W and T are $L Z S$. Then the following conditions are equivalent.
(1) W, T are $S A$-submodules of V.
(2) $V=W \oplus_{w} T=T \oplus_{w} W$.

If (1), (2) hold, then V is $L Z S$.
Proof. (1) $\Rightarrow(2)$ is clear by Theorem 2.2, and $(2) \Rightarrow(1)$ is clear by Theorem 2.1. If (1), (2) hold, then it follows by the last sentence in Theorem 2.1 that V is LZS.

The following lemma will be useful.
Lemma 2.6. Assume that W, T, Y, Z are submodules of V with

$$
V=W \oplus_{w} T=Y+Z
$$

Assume also that W is $L Z S$.
a) Then $T=(T \cap Y)+(T \cap Z)$.
b) If moreover $V=Y \oplus_{w} Z$, then $T=(T \cap Y) \oplus_{w}(T \cap Z)$.

Proof. a): This is clear since T is in $\operatorname{SA}(V)$ (Theorem 2.1).
b): If $y \in T \cap Y$ and $y \neq 0$ then $(y+Z) \cap Z=\emptyset$, and so

$$
[y+(T \cap Z)] \cap T \cap Z=\emptyset .
$$

2.2. SA-decompositions.

We assume throughout that the R-module V is LZS (and so all submodules of V also are LZS), a natural hypothesis in view of the preceding Theorems 2.1 and 2.5. Given two decompositions

$$
\begin{equation*}
V=W_{1} \oplus_{w} W_{1}^{\prime}=W_{2} \oplus_{w} W_{2}^{\prime}, \tag{2.1}
\end{equation*}
$$

we know by Theorems 2.1 and 2.5 that all four submodules $W_{1}, W_{1}^{\prime}, W_{2}, W_{2}^{\prime}$ are in $\mathrm{SA}(V)$, and that

$$
V=W_{1}^{\prime} \oplus_{w} W_{1}=W_{2}^{\prime} \oplus_{w} W_{2}
$$

By Lemma 2.6 we have decompositions

$$
\begin{array}{lll}
W_{1} & =W_{1} \cap W_{2} \oplus_{w} & W_{1} \cap W_{2}^{\prime}, \\
W_{1}^{\prime} & =W_{1}^{\prime} \cap W_{2} \oplus_{w} & W_{1}^{\prime} \cap W_{2}^{\prime} \tag{2.2}
\end{array}
$$

and analogous decompositions of W_{2}, W_{2}^{\prime}. By adding we obtain

$$
\begin{equation*}
V=\left[\left(W_{1} \cap W_{2}\right) \oplus_{w}\left(W_{1} \cap W_{2}^{\prime}\right)\right] \oplus_{w}\left[\left(W_{1}^{\prime} \cap W_{2}\right) \oplus_{w}\left(W_{1}^{\prime} \cap W_{2}^{\prime}\right)\right] . \tag{2.3}
\end{equation*}
$$

Since $W_{1}^{\prime} \cap W_{2}^{\prime}$ is in $\mathrm{SA}(V)$ we conclude by Theorem 2.2 that

$$
\begin{equation*}
V=\left[\left(W_{1} \cap W_{2}\right)+\left(W_{1} \cap W_{2}^{\prime}\right)+\left(W_{1}^{\prime} \cap W_{2}\right)\right] \oplus_{w} W_{1}^{\prime} \cap W_{2}^{\prime} . \tag{2.4}
\end{equation*}
$$

Furthermore, by adding the equalities

$$
\begin{aligned}
& W_{1}=W_{1} \cap W_{2}+W_{1} \cap W_{2}^{\prime}, \\
& W_{2}=W_{1} \cap W_{2}+W_{1}^{\prime} \cap W_{2},
\end{aligned}
$$

we obtain

$$
\begin{equation*}
W_{1}+W_{2}=W_{1} \cap W_{2}+W_{1} \cap W_{2}^{\prime}+W_{1}^{\prime} \cap W_{2} \tag{2.5}
\end{equation*}
$$

Comparing (2.4) and (2.5) we learn the following.
Proposition 2.7. The present situation (2.1) implies that

$$
\begin{equation*}
V=\left(W_{1}+W_{2}\right) \oplus_{w}\left(W_{1}^{\prime} \cap W_{2}^{\prime}\right) . \tag{2.6}
\end{equation*}
$$

But we do not know whether $W_{1}+W_{2}$ is in $\mathrm{SA}(V)$ or not. If W_{1}, W_{2} are direct summands of V then we know from [4, Theorem 2.9] that $W_{1}+W_{2}$ is a direct summand of V, and so $W_{1}+W_{2}$ is an SA-submodule of V. This difficulty prompts the following somewhat unusual definition of "SA-decompositions" and "SA-summands."

Definition 2.8.

a) We call a family ($\left.T_{i} \mid i \in I\right)$ in $\mathrm{SA}(V)$ orthogonal, if for any two indices $i \neq j$, the intersection $T_{i} \cap T_{j}$ equals 0 .
b) An SA-decomposition of V is an orthogonal family $\left(T_{i} \mid i \in I\right)$ in $\mathrm{SA}(V)$ with all $T_{i} \neq 0$, which spans V, i.e., $V=\sum_{i \in I} T_{i}$.
c) We call a submodule T of V an SA-summand of V if T is a member of an SAdecomposition $\left(T_{i} \mid i \in I\right)$ of V, i.e., $T=T_{i}$ for some $i \in I$.
d) We say that V is SA-indecomposable, if V does not have any $S A$-summand $T \neq V$, i.e., $\{V\}$ is the unique $S A$-decomposition of V.

Remark 2.9. If $\left(T_{i} \mid i \in I\right)$ is an orthogonal family in $\operatorname{SA}(V)$ with all $T_{i} \neq 0$, then $\left(T_{i} \mid i \in I\right)$ is an $S A$-decomposition of $W=\sum_{i} T_{i}$, since every T_{i} is also an $S A$-submodule of W.

Any family $\left(U_{\lambda} \mid \lambda \in \Lambda\right)$ in $\Sigma \mathrm{SA}(V)$ has the supremum $\sum_{\lambda \in \Lambda} U_{\lambda}$ in $\Sigma \mathrm{SA}(V)$, but even for two SA-sums U_{1}, U_{2} no infimum in $\Sigma \mathrm{SA}(V)$ is in sight. This changes if one of the modules U_{1}, U_{2} is in $\mathrm{SA}(V)$.

Remark 2.10. If $W \in \mathrm{SA}(V), U \in \Sigma \mathrm{SA}(V)$ and $U=\sum_{i \in I} W_{i}$ with $W_{i} \in \mathrm{SA}(V)$, then

$$
\begin{equation*}
W \cap U=\sum_{i \in I}\left(W \cap W_{i}\right), \tag{2.7}
\end{equation*}
$$

and so $W \cap U$ is an $S A$-sum in V. The module $W \cap U$ is the infimum of W and U in $\Sigma \mathrm{SA}(V)$. Furthermore $W+U$ is the supremum of W and U in $\Sigma \mathrm{SA}(V)$.

We cannot build up finite SA-decompositions from binary SA-decompositions, as is common for finite direct decompositions, but nevertheless a finite SA-decomposition may be viewed as an iterated formation of weak complements of Σ SA-modules, due to the following fact.

Proposition 2.11. Assume that $\left(T_{i} \mid 1 \leq i \leq n\right)$ is a finite orthogonal family in $\mathrm{SA}(V)$. Let $U:=\sum_{i=1}^{n} T_{i} \in \Sigma \mathrm{SA}(V)$. Then the chain in $\Sigma \mathrm{SA}(V)$

$$
\begin{equation*}
U_{0}=\left\{0_{V}\right\} \subset U_{1} \subset U_{2} \subset \cdots \subset U_{n}=U \tag{*}
\end{equation*}
$$

with $U_{r}:=\sum_{i=1}^{r} T_{i} \quad(1 \leq r \leq n)$ has the property

$$
\begin{equation*}
U_{r+1}=U_{r} \oplus_{w} T_{r+1} \quad(0 \leq r \leq n) \tag{2.8}
\end{equation*}
$$

Proof. This follows from Theorem 2.2 since $U_{r+1}=U_{r}+T_{r+1}$ and

$$
U_{r} \cap T_{r+1}=\sum_{i=1}^{r}\left(T_{i} \cap T_{r+1}\right)=0 .
$$

Note that conversely the chain $(*)$ in $\Sigma \mathrm{SA}(V)$ determines the family $\left(T_{i} \mid 1 \leq i \leq n\right)$, due to the uniqueness of weak complements (Theorem 2.4). If an infinite orthogonal family $\left(T_{i} \mid i \in I\right)$ in $\mathrm{SA}(V)$ is given, then we see in the same way that for any module $U_{J}:=\sum_{i \in J} T_{i}$ and $k \in J$ we have

$$
\begin{equation*}
U_{J}=U_{J \backslash\{k\}} \oplus_{w} T_{k} . \tag{2.9}
\end{equation*}
$$

Definition 2.12. Given two $S A$-decompositions $\left(T_{i} \mid i \in I\right),\left(S_{j} \mid j \in J\right)$ of V we say that the second SA-decomposition refines the first one, if every module S_{j} is contained in some module T_{i}.

If this happens then clearly every S_{j} is contained in a unique module T_{i}, since different members of $\left(T_{i} \mid i \in I\right)$ have intersection zero. We thus have a unique map $\lambda: J \rightarrow I$ with
$S_{j} \subset T_{\lambda(j)}$ for each $j \in J$. This map λ is surjective, since otherwise $\left(S_{j} \mid j \in J\right)$ would not span V. It follows that for every $i \in T$

$$
\begin{equation*}
T_{i}=\sum_{\lambda(j)=i} S_{j} \tag{2.10}
\end{equation*}
$$

and so $\left(S_{j} \mid \lambda(j)=i\right)$ is an SA-decomposition of T_{i}. Now the following is obvious.
Theorem 2.13. Any R-module V has at most one $S A$-decomposition $\left(T_{i} \mid i \in I\right)$, where all T_{i} are $S A$-indecomposable. This is the finest $S A$-decomposition of V.

Proposition 2.14. Any two $S A$-decompositions have a common refinement.
Proof. Assume that ($T_{i} \mid i \in I$) and ($S_{j} \mid j \in J$) are two decompositions of V. We have

$$
V=\sum_{i \in I} T_{i}=\sum_{j \in J} S_{j} .
$$

Then, since $T_{i} \in \mathrm{SA}(V)$, we have

$$
T_{i}=\sum_{j \in J} T_{i} \cap S_{j}
$$

(cf. Lemma 2.6. a), and so

$$
\begin{equation*}
V=\sum_{(i, j) \in I \times J} T_{i} \cap S_{j} . \tag{*}
\end{equation*}
$$

Furthermore, $\left(T_{i} \cap S_{j}\right) \cap\left(T_{k} \cap S_{\ell}\right)=0$ if $(i, j) \neq(k, \ell)$. Let K denote the subset of $I \times J$ consisting of all (i, j) with $T_{i} \cap S_{j} \neq 0$. Then $\left(T_{i} \cap S_{j} \mid(i, j) \in K\right)$ is a common refinement of the SA-decompositions $\left(T_{i} \mid i \in I\right)$ and $\left(S_{j} \mid j \in J\right)$.

It is evident that the SA-decomposition just constructed is the coarsest common refinement of the SA-decompositions $\left(T_{i} \mid i \in I\right)$ and $\left(S_{j} \mid j \in J\right)$ of V.

Proposition 2.15. If V is finitely generated, then every $S A$-decomposition $\left(T_{i} \mid i \in I\right)$ of V is finite (i.e., I is finite).

Proof. We pick a set of generators $\left\{s_{1}, \ldots, s_{r}\right\}$ of V. For every $k \in\{1, \ldots, r\}$ there is a finite subset I_{k} of I such that $s_{k} \in \sum_{i \in I_{k}} T_{i}$, whence $R s_{k} \subset \sum_{i \in I_{k}} T_{i}$. Thus

$$
V=\sum_{k=1}^{r} R s_{k} \subset \sum_{i \in J} T_{i}
$$

with $J:=\bigcup_{k=1}^{r} I_{k}$ finite. Suppose that $J \neq I$. Then choosing some $\ell \in I \backslash J$ we have $T_{\ell} \subset \sum_{i \in J} T_{i}$. But this is impossible since all intersections $T_{\ell} \cap T_{i}$ with $i \in J$ are zero, and so

$$
T_{\ell}=\bigcup_{i \in J}\left(T_{\ell} \cap T_{i}\right)=0
$$

Thus $J=I$.
Theorem 2.16. Assume that W and T are submodules of V with $T \in \operatorname{SA}(V), W+T=V$, $W \cap T=0$, (whence $V=W \oplus_{w} T$ by Theorem (2.2). Let $\left(v_{\lambda} \mid 1 \leq \lambda \leq d\right)$ be a system of generators of V. Write $v_{\lambda}=w_{\lambda}+t_{\lambda}$ with $w_{\lambda} \in W, t_{\lambda} \in T$. Then $\left(t_{\lambda} \mid 1 \leq \lambda \leq d\right)$ is a system of generators of T.

Proof. $V=\sum_{\lambda \in \Lambda} R\left(w_{\lambda}+t_{\lambda}\right)$. It follows that

$$
V=\sum_{\lambda \in \Lambda} R w_{\lambda}+\sum_{\lambda \in \Lambda} R t_{\lambda} .
$$

Intersecting with T we obtain

$$
T=\underbrace{\left(\Sigma R w_{\lambda}\right) \cap T}_{0}+\left(\sum_{\lambda \in \Lambda} R t_{\lambda}\right) \cap T=\sum_{\lambda \in \Lambda} R t_{\lambda} .
$$

Corollary 2.17. Let $\left(T_{i} \mid i \in I\right)$ be an $S A$-decomposition of V. Then V is finitely generated iff I is finite and each R-module T_{i} is finitely generated.

Proof. This is an immediate consequence of Proposition 2.15 and Theorem 2.16.
In the case that R is commutative and $V=R$, considered as an R-module, we obtain the following explicit description of all SA-decompositions of R. First note that by Proposition 2.15 all SA-decompositions of R are finite.

Theorem 2.18. Assume that the semiring R is commutative. Then the $S A$-decompositions ($T_{i} \mid 1 \leq i \leq n$) of R are the families $\left(e_{i} R \mid 1 \leq i \leq n\right)$ given by the complete finite orthogonal systems ($e_{i} \mid 1 \leq i \leq n$) of idempotents of $R\left(e_{i} e_{j}=\delta_{i j} e_{i}, \sum_{i=1}^{n} e_{i}=1\right)$. In this way the SA-decompositions of R correspond uniquely to the complete orthogonal systems of idempotents of R. Every $S A$-decomposition of R is a direct decomposition of R.

Proof. If $\left(e_{i} \mid 1 \leq i \leq n\right)$ is a complete family of orthogonal idempotents of R, then it is plain that

$$
R=\bigoplus_{i=1}^{n} e_{i} R
$$

and so ($e_{i} R \mid 1 \leq i \leq n$) is also an SA-decomposition of R.
Conversely assume that $\left(T_{i} \mid 1 \leq i \leq n\right)$ is an SA-decomposition of R. Then all T_{i} are ideals of R, and so $T_{i} T_{j} \subset T_{i} \cap T_{j}=0$ for $i \neq j$. We pick elements e_{1}, \ldots, e_{n} of R with $e_{i} \in T_{i}$ and

$$
1=e_{1}+\cdots+e_{n} .
$$

Multiplying by e_{k} for some $k \in\{1, \ldots, n\}$ we obtain

$$
e_{k}=\sum_{i=1}^{n} e_{k} e_{i} .
$$

But for $k \neq i$ we have $e_{k} e_{i} \in T_{k} \cap T_{i}=0$, and conclude that $e_{k}=e_{k}^{2}$. Thus $\left\{e_{1}, \ldots, e_{n}\right\}$ is a complete system of orthogonal idempotents of R. If $x \in T_{i}$ then

$$
x=\left(\sum_{j=1}^{n} e_{j}\right) x=\sum_{j=1}^{n} e_{j} x=e_{i} x,
$$

since $e_{j} x \in T_{j} T_{i}=0$ for $j \neq i$. Conversely if $x \in R$ and $x=e_{i} x$ then $x \in T_{i}$, since $e_{i} R \subset T_{i}$. This proves that $T_{i}=e_{i} R$. The e_{i} are uniquely determined by the family of submodules $\left(T_{i} \mid 1 \leq i \leq n\right)$ of R, since $R=\sum_{i=1}^{n} T_{i}$ and $e_{i} x=x$ for $x \in T_{i}$, while $e_{j} x=0$ for $x \in T_{j}$.

Remark 2.19. If $\left(T_{i} \mid i \leq i \leq n\right)$ is an $S A$-decomposition of a commutative semiring R, viewed as an R-module, then the T_{i} are ideals of the semiring R with $T_{i} \cap T_{j}=T_{i} T_{j}=0$ for $i \neq j$, and they can be viewed as semirings having as unit elements the idempotents e_{i} from above. Thus an $S A$-decomposition of R as an R-module is the same as a finite direct product decomposition

$$
R=T_{1} \times \cdots \times T_{n}=\prod_{i=1}^{n} T_{i}
$$

of R as a semiring.
We illustrate Theorem 2.18 by some examples. Let X be a topological space, and, as common, let $C(X)$ denote the ring of continuous \mathbb{R}-valued functions on X. This ring is equipped with the "function ordering", where $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in X$. Furthermore let $C^{+}(X)$ denote the positive cone of this partial ordering on $C(X)$, i.e.,

$$
C^{+}(X):=\{f \in C(X) \mid f \geq 0\}
$$

a semiring lacking zero sums. Our interest is in the SA-submodules of the semiring $C^{+}(X)$, viewed as a $C^{+}(X)$-module. Note that $C^{+}(X)$ is the set of all continuous functions on X with values in $\mathbb{R}_{\geq 0}=\left[0, \infty\left[\right.\right.$. The restriction of the function ordering to $C^{+}(X)$ coincides with the minimal ordering, since for $f \leq g$ in $C^{+}(X)$ we have

$$
g=f+(g-f)
$$

and $g-f \in C^{+}(X)$.
It is plain that the function $f \in C(X)$ is an idempotent of $C(X)$ iff f has only values in $\{0,1\}$, and so f is the characteristic function χ_{U} of a clopen ($=$ closed and open) subset of $X_{j} ; \chi_{U}(x)=1$ if $x \in U, \chi_{U}(x)=0$ if $x \in X \backslash U$. All these idempotents lie in $C^{+}(X)$. Thus a complete orthogonal system $\left(e_{i} \mid i \leq i \leq n\right)$ of $C^{+}(X)$ corresponds uniquely to a finite disjoint decomposition $X=\bigcup_{\dot{U}}^{i} U_{i}$ of X into clopen subsets via $e_{i}=\chi_{U_{i}}$. In particular $C^{+}(X)$ itself is SA-indecomposable iff the topological space X is connected. In consequence of Theorem 2.18 we can describe all SA-decompositions of $C^{+}(X)$ when the clopen subsets of X are known. We give three examples. Some more notation: $] \alpha, \beta[$ (resp. $[\alpha, \beta]$) denotes the open (resp. closed) interval from α to β. Likewise for the half-closed intervals $] \alpha, \beta$] and $[\alpha, \beta[$.

Examples 2.20. We fix a topological subspace X of the real line \mathbb{R}. Let $R:=C^{+}(X)$.
a) If X is an interval of \mathbb{R} (open, half-open, closed), then R is $S A$-indecomposable.
b) Assume that $\left(x_{n} \mid n \in \mathbb{N}\right)$ is a strictly increasing sequence in \mathbb{R} converging to $x_{\infty}:=$ $\sup _{n \in \mathbb{N}} x_{n} \in \mathbb{R}$. Let $X=\left\{x_{n} \mid n \in \mathbb{N}\right\} \cup\left\{x_{\infty}\right\}$. The primitive idempotents of R are $n \in \mathbb{N}$ precisely all elements

$$
e_{n}:=\chi_{\left\{x_{n}\right\}} \quad(n \in \mathbb{N}),
$$

and so the $S A$-indecomposable summands of R are the ideals

$$
T_{n}:=e_{n} R \quad(n \in \mathbb{N})
$$

of R, consisting of the \mathbb{R}_{+}-valued functions f on X with $f(x)=0$ for $x \in X \backslash\left\{x_{n}\right\}$. For every $n \in \mathbb{N}$ we also have an idempotent g_{n} of R with

$$
e_{1}+\cdots+e_{n}+g_{n}=1
$$

and $e_{i} g_{n}=0$ for $1 \leq i \leq n$, namely the characteristic function $\chi_{Y_{n}}$ of

$$
Y_{n}:=\left\{x_{i} \mid i>n\right\} \cup\left\{x_{\infty}\right\} .
$$

These clopen sets Y_{n} constitute a fundamental system of neighborhoods of x_{∞} in X. The SA-decompositions ($T_{1}, \ldots, T_{n}, S_{n}$) of R which correspond to the orthogonal systems $\left(e_{1}, \ldots, e_{n}, g_{n}\right)$, i.e., $T_{i}=R e_{i}, S_{n}=R g_{n}$, are co-final in the set of all $S A$ decompositions of R under refinement. Note that the "decomposition socle"

$$
\mathrm{dsoc}(R)=\bigoplus_{i \in \mathbb{N}} R e_{i}
$$

of R (cf. [4, Definition 2.15]) is not an SA-summand of R, but is an $S A$-submodule of R. It is the set $\left\{f \in R \mid f\left(x_{\infty}\right)=0\right\}$.
c) Let $X=\mathbb{Q} \subset \mathbb{R}$. The clopen subsets of X are the disjoint unions of intervals

$$
] \alpha, \beta[:=\{x \in \mathbb{Q} \mid \alpha<x<\beta\}
$$

with $\alpha, \beta \in(\mathbb{R} \cup\{-\infty, \infty\}) \backslash \mathbb{Q}$ and $\alpha<\beta$. Every such interval $] \alpha, \beta[$ provides an idempotent $e_{\alpha, \beta}:=\chi_{] \alpha, \beta\lceil }$ of $R=C^{+}(\mathbb{Q})$, and so an SA-submodule

$$
T_{\alpha, \beta}:=e_{\alpha, \beta} R
$$

consisting of all $f \in R$ with $f(x)=0$ for $x<\alpha$ or $x>\beta$. These submodules $T_{\alpha, \beta}$ are a co-final system of $S A$-summands of R (with respect to reverse inclusion). If $\gamma \in] \alpha, \beta[\backslash \mathbb{Q}$, then

$$
e_{\alpha, \beta}=e_{\alpha, \gamma}+e_{\gamma, \beta}, \quad e_{\alpha, \gamma} \cdot e_{\gamma, \beta}=0 .
$$

Thus every module $T_{\alpha, \beta}$ is $S A$-decomposable. It follows that R contains no $S A$ indecomposable $S A$-summands altogether.

Every finite sequence $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}$ in $\mathbb{R} \backslash \mathbb{Q}$ gives a partition of \mathbb{Q} into clopen intervals $]-\infty, \alpha_{1}[,] \alpha_{1}, \alpha_{2}[, \ldots,] \alpha_{n}, \infty[$, and thus a complete orthogonal system of idempotents $\left\{e_{-\infty, \alpha_{1}}, e_{\alpha_{1}, \alpha_{2}}, \ldots, e_{\alpha_{n}, \infty}\right\}$ which corresponds to a direct sum decomposition

$$
R=T_{-\infty, \alpha_{1}} \oplus T_{\alpha_{1}, \alpha_{2}} \oplus \cdots \oplus T_{\alpha_{n}, \infty}
$$

These decompositions are a co-final system in the set of all finite SA-decompositions of R with respect to refinement.

3. The lattice $\mathrm{SA}(\mathrm{V})$

Proposition 3.1. $\mathrm{SA}(V)$ is a modular lattice. More precisely, if W_{i} are submodules with $W_{1} \leq W_{2}$ and W_{2} is $S A$, then

$$
W_{1}+\left(W_{2} \cap W_{3}\right)=W_{2} \cap\left(W_{1}+W_{3}\right) .
$$

Proof. (\subseteq) is immediate. To prove (\supseteq), suppose $x_{2}=x_{1}+x_{3} \in W_{2}$ for $x_{i} \in W_{i}$. By hypothesis $x_{1}, x_{3} \in W_{2}$, so $x_{3} \in W_{2} \cap W_{3}$ and $x_{2} \in W_{1}+\left(W_{2} \cap W_{3}\right)$.
Corollary 3.2. Suppose $W_{1} \leq W_{2}, W$ are $S A$ submodules of V, with $W_{1} \cap W=W_{2} \cap W$ and $W_{1}+W=W_{2}+W$. If $W_{1}+W$ is $S A$, then $W_{1}=W_{2}$.

Corollary 3.3. Given a set $\left\{W_{i}: i \in I\right\}$ of distinct submodules of an $S A$-module V, for I infinite, and any submodule W, either $\left\{W_{i} \cap W: i \in I\right\}$ or $\left\{W_{i}+W: i \in I\right\}$ contains infinitely many distinct submodules.

Definition 3.4. Let $\left(T_{i} \mid i \in I\right)$ denote the set of all minimal non-zero $S A$-submodules of V. (It can happen that this set is empty.) We define the $S A$-socle of V by

$$
P:=\operatorname{soc}_{\mathrm{SA}}(V):=\sum_{i \in I} T_{i}
$$

(read $P=0$ if $I=\emptyset)$.
Note that if $i, j \in I$ are different indices then $T_{i} \cap T_{j}=0$, and that $T_{i} \in \operatorname{SA}(P)$ for every $i \in I$. Thus ($T_{i} \mid i \in I$) is an SA-decomposition of the SA-socle P.

3.1. Krull dimension (in the sense of Lemonnier-Gordon-Robson).

$\mathrm{SA}(V)$, being a modular lattice, admits a satisfying dimension theory, denoted SA-Kdim, along the lines of Krull dimension, as defined and exposed elegantly in [3, which we use as our model. Since quotient modules do not play an effective role over semirings, we need to consider instead pairs (V, W) where $V \supsetneqq W$. Fortunately, this theory already was developed at the level of lattices by Lemonnier [5], and is developed in this generality in [6], so all we need to do is put it in the present context.

Definition 3.5.

a) The pair (V, W) is SA-artinian if every descending chain

$$
S_{0} \supsetneqq S_{1} \supsetneqq S_{2} \supsetneqq \ldots
$$

of finitely generated non-zero SA-submodules of V containing W stops after finitely many steps. The R-module V is $S A$-artinian if $(V, 0)$ is $S A$-artinian.
b) The pair (V, W) is $S A$-noetherian if every ascending chain

$$
S_{0} \varsubsetneqq S_{1} \varsubsetneqq S_{2} \varsubsetneqq \cdots
$$

of finitely generated non-zero $S A$-submodules of V containing W stops after finitely many steps. The R-module V is $S A$-noetherian if $(V, 0)$ is $S A$-noetherian.
c) The pair (V, V) has $\operatorname{SA}-K d i m$ equal to -1 . For $W \neq V, \operatorname{SA}-\operatorname{Kdim}(V, W)=0$ if for every descending chain

$$
\begin{equation*}
W_{0} \supsetneqq W_{1} \supsetneqq W_{2} \supsetneqq \ldots \tag{3.1}
\end{equation*}
$$

in $\mathrm{SA}(V ; W)$ stops after finitely many steps.
In general, SA-Kdim (V, W) (if it exists) is the smallest ordinal θ for which for every chain (3.1) one must have SA-Kdim $\left(W_{i}, W_{i+1}\right)<\theta$ for almost all i. Such a chain is called θ-stable. $\mathrm{SA}-\mathrm{Kdim}(V)$ (if it exists) is $\operatorname{SA} \operatorname{Kdim}(V, 0)$.
d) A pair $\left(W, W^{\prime}\right)$ of $S A$-sumodules is called $\boldsymbol{S} \boldsymbol{A}$-critical if $\operatorname{SA}-K \operatorname{dim}\left(W, W^{\prime}\right)=\theta$ but SA-Kdim $\left(W, W^{\prime \prime}\right)<\theta$ whenever $W \supsetneqq W^{\prime \prime} \supsetneqq W^{\prime}$.
e) The submodule W is θ-SA-critical if $(W, 0)$ is $S A$-critical.

This leads to a natural generalization of the socle (cf. Definition 3.4). One can define the SA-critical socle [6, p. 146] to be the sum of all SA-critical submodules of V, of minimal SA-Kdim, but we do not go in that direction.

Unfortunately, SA-artinian R-modules seem to be not very frequent, but here is an instance.

Definition 3.6. A set of generators T of V is $\boldsymbol{S A} \boldsymbol{A}$-adapted if every $S A$-submodule W of V is generated by the set $W \cap T$.

Example 3.7. If V has an $S A$-adapted finite set of generators, then V is certainly $S A$ artinian.

Hence, some of the results emerge more neatly for finitely generated SA-modules, and we need some more terminology.

Notation 3.8.

a) Given a module V over a semiring R, we denote the set of all finitely generated SA-modules of V by $\mathrm{SA}_{f}(V)$. We furthermore denote the set of all sums $\sum_{i \in I} W_{i}$ of families $\left(W_{i} \mid i \in I\right)$ in $\mathrm{SA}_{f}(V)$ by $\Sigma \mathrm{SA}_{f}(V)$ and the subset of all such sums with finite I by $\Sigma_{f} \mathrm{SA}_{f}(V)$.
b) Observe that the modules $U \in \Sigma_{f} \mathrm{SA}_{f}(V)$ are again finitely generated. Moreover it is easily seen that $\Sigma_{f} \mathrm{SA}_{f}(V)$ is the set of all finitely generated modules $U \in \Sigma \mathrm{SA}_{f}(V)$.
c) We often call a module $W \in \mathrm{SA}_{f}(V)$ an SA_{f}-submodule of V, and call a module $U \in \Sigma \mathrm{SA}_{f}(V)$ a $\Sigma \mathrm{SA}_{f}$-submodule of V, or a SA_{f}-sum in V, furthermore call a module $U \in \Sigma_{f} \mathrm{SA}_{f}(V)$ a finite SA_{f}-sum in V.
d) The pair (V, V) has $\mathrm{SA}_{f}-\operatorname{Kdim}$ equal to -1 . For $W \neq V, \mathrm{SA}_{f}-\operatorname{Kdim}(V, W)=0$ if for every descending chain

$$
\begin{equation*}
W_{0} \supsetneqq W_{1} \supsetneqq W_{2} \supsetneqq \ldots \tag{3.2}
\end{equation*}
$$

in $\mathrm{SA}_{f}(V ; W)$ stops after finitely many steps. In general, $\mathrm{SA}_{f}-\operatorname{Kdim}(V, W)$ (if it exists) is the smallest ordinal θ for which for every chain (3.2) one must have SA_{f} $\operatorname{Kdim}\left(W_{i}, W_{i+1}\right)<\theta$ for almost all $i . \mathrm{SA}_{f}-\mathrm{Kdim}(V)$ (if it exists) is $\mathrm{SA}_{f}-\operatorname{Kdim}(V, 0)$.
The following results are really special cases of results in [5, 6] as indicated above.
Proposition 3.9 ([6, 3.1.8]). Every SA-noetherian module has SA-Kdim.
Proposition 3.10 ([6, 1.3.7]). Define the composition length $\ell(V, W)$ from V to $W \subset V$ to be the length m of a chain (if it exists)

$$
\begin{equation*}
V=W_{0} \supsetneqq W_{1} \supsetneqq \cdots \supsetneqq W_{m}=W \tag{3.3}
\end{equation*}
$$

for which, for each i, the chain $W_{i} \supsetneqq W_{i+1}$ cannot be refined to $W_{i} \supsetneqq W_{i}^{\prime} \supsetneqq W_{i+1}$. Then $\ell(V, W)$ is well-defined (independent of the choice of chain (3.3)), and additive in the sense that

$$
\ell(V, W)=\ell\left(V, W^{\prime}\right)+\ell\left(W^{\prime}, W\right), \quad \forall V \supsetneqq W^{\prime} \supsetneqq W .
$$

(This holds in either context, $\mathrm{SA}(V)$ or $\mathrm{SA}_{f}(V)$.) Analogously, we have
Proposition 3.11. SA-Kdim $(V)=\sup \{\operatorname{SA}-\operatorname{Kdim}(V, W), \operatorname{SA}-\operatorname{Kdim}(W)\}$.

3.2. SA-equivalence and SA-uniform modules.

A neuralgic point, for the sake of brevity often not adequately reflected in our terminology, is the fact that for $W \in \operatorname{Mod}(V)$ the set $\mathrm{SA}(W)$ is definitely bigger than $\operatorname{Mod}(W) \cap \mathrm{SA}(V)$ except in the case that $W \in \operatorname{SA}(V)$.

We introduce on $\operatorname{Mod}(V)$ an equivalence relation which plays a central role throughout the subsection. For the remainder of this section, the module V is LZS.

Definition 3.12. Given $W_{1}, W_{2} \in \operatorname{Mod}(V)$, we say that W_{1} and W_{2} are $S A$-equivalent (in V) if for any $S \in S A(V)$ either $W_{1} \cap S=W_{2} \cap S=0$ or both $W_{1} \cap S$ and $W_{2} \cap S$ are nonzero (where " 0 " means the zero module $\left\{0_{V}\right\}$). We then write $W_{1} \sim_{e} W_{2}$. In the rare case where a second module V^{\prime} is under consideration and W_{1}, W_{2} are also submodules of V^{\prime}, we speak more precisely about the above equivalence relation as an $S A(V)$-equivalence, or specify "in V ".

SA-equivalence is closely related to a notion of "SA-essential extension" of R-modules, to be defined now, which vaguely resembles the all-important notion of "essential extension" in the theory of modules over rings.

Definition 3.13. If $W, W^{\prime} \in \operatorname{Mod}(V)$, we say that W^{\prime} is an SA-essential extension of W (in V), and write $W \subset_{e} W^{\prime}$, if $W \subset W^{\prime}$ and for $S \cap W \neq 0$ every $S \in \mathrm{SA}(V)$ with $S \cap W^{\prime} \neq 0 .{ }^{2}$

Remark 3.14. If W, W^{\prime} are submodules of V with $W \subset W^{\prime}$, then $W \subset_{e} W^{\prime}$ means the same as $W \sim_{e} W^{\prime}$.

We list easy facts about SA-equivalence and SA-extensions.
Lemma 3.15. Assume that W_{1}, W_{2}, X are submodules of V with $W_{1} \subset X \subset W_{2}$. Then the following are equivalent.
(1) $W_{1} \subset_{e} W_{2}$.
(2) $W_{1} \subset_{e} X$ and $X \subset_{e} W_{2}$.

Proof. (1) \Rightarrow (2): If $T \in \operatorname{SA}(V)$ with $T \cap X \neq 0$, then $T \cap W_{2} \neq 0$, whence $T \cap W_{1} \neq 0$. This proves that $W_{1} \subset_{e} X$. We have $X \sim_{e} W_{1} \sim_{e} W_{2}$, and so $X \sim_{e} W_{2}$, whence $X \subset_{e} W_{2}$. $(2) \Rightarrow(1)$: We have $W_{1} \sim_{e} X \sim_{e} W_{2}$, whence $W_{1} \sim_{e} W_{2}$, and so $W_{1} \subset_{e} W_{2}$.

Remark 3.16. Assume that $\left(W_{i} \mid i \in I\right)$ and $\left(W_{i}^{\prime} \mid i \in I\right)$ are families in $\operatorname{Mod}(V)$ with $W_{i} \sim_{e} W_{i}^{\prime}$ for every $i \in I$. Then

$$
\begin{equation*}
\sum_{i \in I} W_{i} \sim_{e} \sum_{i \in I} W_{i}^{\prime} \tag{3.4}
\end{equation*}
$$

Proof. Let $S \in \mathrm{SA}(V)$. Then

$$
S \cap\left(\sum_{i} W_{i}\right)=\sum_{i} S \cap W_{i}, S \cap\left(\sum_{i} W_{i}^{\prime}\right)=\sum_{i} S \cap W_{i}^{\prime},
$$

and so

$$
S \cap \sum_{i} W_{i} \neq 0 \Leftrightarrow \underset{i \in I}{\exists} S \cap W_{i} \neq 0 \Leftrightarrow \underset{i \in I}{\exists} S \cap W_{i}^{\prime} \neq 0 \Leftrightarrow S \cap \sum_{i} W_{i}^{\prime} \neq 0
$$

Note in particular that

$$
\begin{equation*}
W \sim_{e} W^{\prime} \Rightarrow W+X \sim_{e} W^{\prime}+X \tag{3.5}
\end{equation*}
$$

for any $X \in \operatorname{Mod}(V)$.
Remark 3.17. Let $W_{1}, W_{2} \in \operatorname{Mod}(V)$ and $S \in \operatorname{SA}(V)$ be given. Then

$$
W_{1} \sim_{e} W_{2} \Rightarrow S \cap W_{1} \sim_{e} S \cap W_{2}
$$

Proof. If $T \in \mathrm{SA}(V)$ and $W_{1} \sim_{e} W_{2}$, then $S \cap T \in \mathrm{SA}(V)$, and so

$$
\left(W_{1} \cap S\right) \cap T \neq 0 \quad \Leftrightarrow \quad\left(W_{2} \cap S\right) \cap T \neq 0
$$

Proposition 3.18. Assume that W_{1} and W_{2} are $S A$-submodules of V. Then

$$
W_{1} \sim_{e} W_{2} \quad \Leftrightarrow \quad W_{1} \cap W_{2} \subset_{e} W_{1} \quad \text { and } \quad W_{1} \cap W_{2} \subset_{e} W_{2}
$$

[^2]Proof. (\Leftarrow) : By use of Remark 3.14 we see that $W_{1} \cap W_{2} \sim_{e} W_{1}$ and $W_{1} \cap W_{2} \sim_{e} W_{2}$, whence $W_{1} \sim_{e} W_{2}$.
(\Rightarrow) : Using Remark 3.17 we see that $W_{1} \cap W_{2} \sim_{e} W_{2} \cap W_{2}=W_{2}$ and in the same way that $W_{1} \cap W_{2} \sim_{e} W_{1}$. Thus, again by Remark 3.14,

$$
W_{1} \cap W_{2} \subset_{e} W_{1}, W_{1} \cap W_{2} \subset_{e} W_{2}
$$

Proposition 3.19. Assume that $\left(V_{i} \mid i \in I\right)$ is an orthogonal family in $S A(V)$, and furthermore that $\left(W_{i} \mid i \in I\right)$ is a family in $\operatorname{Mod}(V)$ with $W_{i} \subset V_{i}$ for each $i \in I$. Then

$$
\sum_{i} W_{i} \subset_{e} \sum_{i} V_{i} \Leftrightarrow \forall i \in I: W_{i} \subset_{e} V_{i}
$$

Proof. (\Rightarrow) : Pick some $k \in I$. Then

$$
V_{k} \cap\left(\sum_{i} W_{i}\right)=\sum_{i} V_{k} \cap W_{i}=V_{k} \cap W_{k}=W_{k}
$$

and $V_{k} \cap\left(\sum_{i} V_{i}\right)=V_{k}$. We conclude by means of Remarks 3.14 and 3.17 that $W_{k} \subset_{e} V_{k}$. (\Leftarrow) : We have $W_{i} \sim_{e} V_{i}$ for each $i \in I$ and conclude by Remark 3.16 that $\sum_{i} W_{i} \sim_{e} \sum_{i} V_{i}$, whence by Remark 3.14 that $\sum_{i} W_{i} \subset_{e} \sum_{i} V_{i}$. (Here we did not need the orthogonality assumption on $\left(V_{i} \mid i \in I\right)$.)

Lemma 3.20. If V is $S A$-artinian, Then $\operatorname{soc}_{\mathrm{SA}}(V) \subset_{e} V$.
Proof. It is immediate that every non-zero $S \in \mathrm{SA}(V)$ contains a minimal non-zero SAmodule T_{i}. Thus $S \cap \operatorname{soc}_{\mathrm{SA}}(V) \neq 0$.

Definition 3.21. We call a submodule W of V SA-uniform (in V), if for every $S \in \mathrm{SA}(V)$ with $S \cap W \neq 0$ the extension $S \cap W \subset W$ is $S A$-essential (in V). We denote the set of all these submodules W of V by $\operatorname{Mod}_{\mathrm{u}}(V)$ and its subset $\mathrm{SA}(V) \cap \operatorname{Mod}_{\mathrm{u}}(V)$ by $\mathrm{SA}_{\mathrm{u}}(V) \cdot \boldsymbol{3}^{\mathbf{1}}$

Note that the zero submodule 0 is SA -uniform in V, and furthermore, that $V \in \operatorname{Mod}_{\mathrm{u}}(V)$ iff $S \cap T \neq 0$ for any two non-zero SA-submodules S, T of V.

Theorem 3.22. $\operatorname{Mod}_{\mathrm{u}}(V)$ is a union of full $S A$-equivalence classes in $\operatorname{Mod}(V)$. In other words, if $W, W^{\prime} \in \operatorname{Mod}(V)$ are $S A$-equivalent (in V) and W is $S A$-uniform, then W^{\prime} is SA-uniform.

Proof. Let $S \in \mathrm{SA}(V)$ be given with $S \cap W^{\prime} \neq 0$. From $W \sim_{e} W^{\prime}$ we conclude by Remark 3.17 that $W \cap S \sim_{e} W^{\prime} \cap S$, whence $W \cap S \neq 0$, and so $W \cap S \sim_{e} W$. Since also $W \sim_{e} W^{\prime}$ we conclude that $W^{\prime} \cap S \sim_{e} W^{\prime}$.

Theorem 3.23. Let ξ be an $S A$-equivalence class in $\operatorname{Mod}_{\mathrm{u}}(V)$. Then there exists a unique member $M(\xi)$ of ξ such that

$$
\begin{equation*}
\xi=\left\{W \in \operatorname{Mod}(V) \mid W \subset_{e} M(\xi)\right\} . \tag{3.6}
\end{equation*}
$$

[^3]Proof. We choose a labeling of all elements of $\xi, \xi=\left(W_{i} \mid i \in I\right)$, and fix an index $0 \in I$. We then define $M(\xi)=\sum_{i \in I} W_{i}$. Since $W_{i} \sim_{e} W_{0}$ for every $i \in I$, we conclude by Remark 3.16 that

$$
M(\xi) \sim_{e} \sum_{i \in I} W_{0}=W_{0}
$$

Thus $M(\xi) \in \xi$, and more precisely $M(\xi)$ is the unique maximal element of the poset ξ. If W is a submodule of $M(\xi)$ then $W \in \xi$ iff $W \sim_{e} M(\xi)$ iff $W \subset_{e} M(\xi)$.

By this theorem the $M(\xi)$ are precisely all maximal SA-uniform submodules of V.
We know nearly nothing about the equivalence classes ξ in $\operatorname{Mod}_{\mathbf{u}}(V)$ with $\xi \cap \mathrm{SA}(V)=\emptyset$, but when ξ contains SA-submodules of V we get more insight about ξ (than provided by Theorems 3.22 and 3.23) by SA-restricting ξ to $\Sigma \mathrm{SA}(V) \cap \operatorname{Mod}_{\mathrm{u}}(V)$, as we explain now. We first give a description of the SA-uniform modules in $\Sigma \mathrm{SA}(V)$.
Proposition 3.24. Let $\left(W_{i} \mid i \in I\right)$ be a family of non-zero $S A$-submodules of V. The following are equivalent.
(1) $U:=\sum_{i \in I} W_{i}$ is $S A$-uniform in V.
(2) All $W_{i} \in \operatorname{SA}_{\mathrm{u}}(V)$, and $W_{i} \sim_{e} W_{j}$ for $i \neq j$.
(3) All $W_{i} \in \mathrm{SA}_{\mathrm{u}}(V)$, and $W_{i} \cap W_{j} \neq 0$ for $i \neq j$.

Proof. (1) \Rightarrow (2): Since W_{i} is in $\mathrm{SA}(V)$ and $W_{i} \neq 0$, we have $W_{i}=W_{i} \cap U \subset_{e} U$, whence $W_{i} \sim_{e} U$ and W_{i} is SA-uniform (cf. Theorem 3.22). It follows that $W_{i} \sim_{e} W_{j}$ for $i \neq j$.
$(2) \Leftrightarrow(3):$ Evident.
(2) \Rightarrow (1): Let $S \in \operatorname{SA}(V)$ and $S \cap U \neq 0$. We have $S \cap U=\sum_{i \in I} S \cap W_{i}$, and so there exists $i \in I$ with $S \cap W_{i} \neq 0$, implying $S \cap W_{i} \subset_{e} W_{i}$. Fixing an index $0 \in I$ we have $U=\sum_{i \in I} W_{i} \sim_{e} \sum_{i \in I} W_{0}=W_{0}$ and conclude by Theorem 3.22 that U is SA-uniform.

Assume now that ξ is an SA-equivalence class in $\operatorname{Mod}_{\mathrm{u}}(V) \backslash\{0\}$ with $\xi \cap \mathrm{SA}(V) \neq \emptyset$. We write $\xi \cap \mathrm{SA}(V)=\xi \cap S A_{u}(V)=\left\{W_{i} \mid i \in J\right\}$ and define

$$
\begin{equation*}
U(\xi):=\sum_{i \in J} W_{i} \in \Sigma \mathrm{SA}(V) \tag{3.7}
\end{equation*}
$$

Choosing an index $0 \in J$ we have

$$
\begin{equation*}
U(\xi) \sim_{e} \sum_{i \in J} W_{0}=W_{0} \tag{3.8}
\end{equation*}
$$

Thus $U(\xi)$ is the unique biggest module in the set $\xi \cap \Sigma \mathrm{SA}(V)$.
Proposition 3.25. Assume again that ξ contains a non-zero $S A$-submodule of V. Then

$$
\begin{gather*}
\xi \cap \mathrm{SA}(V)=\left\{W \in \mathrm{SA}_{u}(V) \mid W \neq 0, W \subset U(\xi)\right\} \tag{3.9}\\
\xi \cap \Sigma \mathrm{SA}(V)=\left\{U \in \Sigma \mathrm{SA}(V) \mid U \subset_{e} U(\xi)\right\} \tag{3.10}
\end{gather*}
$$

If in addition V is $S A$-artinian, then $\xi \cap \Sigma \mathrm{SA}(V)$ contains a smallest module $P(\xi)$, and

$$
\begin{equation*}
\xi \cap \Sigma \mathrm{SA}(V)=\{U \in \Sigma \mathrm{SA}(V) \mid P(\xi) \subset U \subset U(\xi)\} \tag{3.11}
\end{equation*}
$$

Proof. In (3.9) the inclusion " \supset " is obvious, while " \subset " follows from (3.8). If $U \in \Sigma \mathrm{SA}(V)$ and $U \in \xi$ then $U \subset U(\xi)$ and $U \sim_{e} U(\xi)$, whence $U \subset_{e} U(\xi)$. Thus (3.10) is evident. If V is SA-artinian, then the set $\xi \cap \mathrm{SA}(V)$ contains a smallest module $P(\xi)$ and so $\xi \cap \mathrm{SA}(V)$
is the set of all $U \in \Sigma \mathrm{SA}(V)$ with $P(\xi) \subset_{e} U \subset_{e} U(\xi)$. Since we know that $P(\xi) \subset_{e} U(\xi)$ the " e " in these inclusions can be omitted.

Lemma 3.26. Assume that S and T are non-zero $S A$-uniform $S A$-submodules of V. Then $S \sim_{e} T$ iff $S \cap T \neq 0$.
Proof. If $S \sim_{e} T$, then $S \cap T \subset_{e} S$ and thus certainly $S \cap T \neq 0$. Conversely, if $S \cap T \neq 0$ then, due to the SA-uniformity of S and T, we have $S \cap T \subset_{e} S$ and $S \cap T \subset_{e} T$, and so $S \sim_{e} T$.

Theorem 3.27.

a) Assume that $\left(T_{i} \mid i \in I\right)$ is a maximal orthogonal family of non-zero SA-uniform submodules of V. Then $\left(T_{i} \mid i \in I\right)$ is a system of representatives of all $S A$-equivalence classes in $\mathrm{SA}_{\mathrm{u}}(V) \backslash\{0\}$.
b) If $\left(S_{j} \mid j \in J\right)$ is a second such family, then there is a bijection $\lambda: I \rightarrow J$ with $T_{i} \sim_{e} S_{\lambda(i)}$ for all $i \in I$, and $\sum_{i \in I} T_{i} \sim_{e} \sum_{j \in J} S_{j}$.
Proof. This is an immediate consequence of the preceding Lemma 3.26.
We are ready to define an invariant for R-modules lacking zero sums.
Definition 3.28. The $\boldsymbol{S A}$-uniformity dimension $\operatorname{dim}_{\text {sau }}(V)$ of V is the cardinality of the set of all $S A$-equivalence classes of nonzero $S A$-uniform submodules of V. In other terms,

$$
1+\operatorname{dim}_{\text {sau }}(V)=\operatorname{card}\left(\mathrm{SA}_{\mathrm{u}}(V) / \sim_{e}\right)
$$

(In particular, $\operatorname{dim}_{\text {sau }}(V)=0$ iff V does not contain any non-zero $S A$-uniform submodule.)
Theorem 3.27 provides the following more elementary description of this invariant.
Corollary 3.29. $\operatorname{dim}_{\operatorname{sau}}(V)$ is the cardinality $|I|$ of any maximal orthogonal family $\left(T_{i} \mid i \in\right.$ $I)$ of non-zero SA-uniform submodules of V.

Theorem 3.30. Assume that $\left(V_{\lambda} \mid \lambda \in \Lambda\right)$ is a family of SA-submodules of V with $\sum_{\lambda \in \Lambda} V_{\lambda}=V$.
a) Then

$$
\begin{equation*}
\operatorname{dim}_{\text {sau }}(V) \leq \sum_{\lambda \in \Lambda} \operatorname{dim}_{\text {sau }}\left(V_{\lambda}\right) \tag{3.12}
\end{equation*}
$$

b) If in addition the family $\left(V_{\lambda}\right)$ is orthogonal (i.e., $V_{\lambda} \cap V_{\mu}=0$ for $\lambda \neq \mu$), then we have equality,

$$
\begin{equation*}
\operatorname{dim}_{\text {sau }}(V)=\sum_{\lambda \in \Lambda} \operatorname{dim}_{\text {sau }}\left(V_{\lambda}\right) . \tag{3.13}
\end{equation*}
$$

Proof. a): Let a non-zero SA-uniform module S be given. Then

$$
S=\sum_{\lambda \in \Lambda} S \cap V_{\lambda}
$$

and thus $S \cap V_{\lambda} \neq 0$ for at least one index λ. This implies that $S \cap V_{\lambda} \in \mathrm{SA}_{\mathrm{u}}\left(V_{\lambda}\right)$ and $S \sim_{e} S \cap V_{\lambda}$. Thus the natural map

$$
\bigcup_{\lambda \in \Lambda}^{\bullet}\left(\mathrm{SA}_{\mathrm{u}}\left(V_{\lambda}\right) \backslash\{0\}\right) / \sim_{e} \longrightarrow\left(\mathrm{SA}_{\mathrm{u}}(V) \backslash\{0\}\right) / \sim_{e}
$$

is surjective. Comparing cardinalities gives the first claim (3.12).
b): If $V_{\lambda} \cap V_{\mu}=0$ for $\lambda \neq \mu$, then any two non-zero modules $S \in \mathrm{SA}\left(V_{\lambda}\right), T \in \mathrm{SA}\left(V_{\mu}\right)$ have intersection zero and thus certainly are not SA-equivalent. Thus now the map $(*)$ is also injective, and in (3.12) holds equality.

Remark 3.31. It is clear that for every $S A$-submodule V^{\prime} of V we have

$$
\operatorname{dim}_{\text {sau }}\left(V^{\prime}\right) \leq \operatorname{dim}_{\text {sau }}(V)
$$

Thus we can complement (3.12) by the inequality

$$
\begin{equation*}
\sup _{\lambda \in \Lambda} \operatorname{dim}_{\text {sau }}\left(V_{\lambda}\right) \leq \operatorname{dim}_{\text {sau }}(V) . \tag{3.14}
\end{equation*}
$$

If $\operatorname{dim}_{\text {sau }}(V)$ is infinite it follows from (3.12), (3.14) that

$$
\operatorname{dim}_{\text {sau }}(V)=\max _{\lambda \in \Lambda} \operatorname{dim}_{\text {sau }}\left(V_{\lambda}\right)=\sum_{\lambda \in \Lambda} \operatorname{dim}_{\text {sau }}\left(V_{\lambda}\right) .
$$

In a similar vein we see, in the case that the set Λ is finite, that $\operatorname{dim}_{\text {sau }}(V)$ is finite iff $\operatorname{dim}_{\text {sau }}\left(V_{\lambda}\right)$ is finite for each λ. Then (3.13) holds iff the family $\left(V_{\lambda} \mid \lambda \in \Lambda\right)$ is orthogonal.

4. SA $_{f}$-HEREDITARY MODULES with SA-Kdim

By working only with finitely generated SA-submodules of V, we obtain results on a wide class of submodules U of V, to be put to use in $\$ 5$ and $\S 6$. Throughout $\S 4\}$, we assume for simplicity that the R-module V is LZS.

Definition 4.1.

a) We say that the R-module V is SA_{f}-hereditary if for any submodule $W \in \mathrm{SA}_{f}(V)$, $W^{\prime} \in \mathrm{SA}_{f}(V)$ for all $W^{\prime} \in \mathrm{SA}(V)$ with $W^{\prime} \subset W$.
b) We say that V is finitely SA-accessible (=SAF-accessible for short) if V is both SA_{f}-hereditary and $\mathrm{SA}-\mathrm{Kdim}(V)$ exists.

Note that if V is finitely generated and SA_{f}-hereditary, then $\mathrm{SA}(V)=\mathrm{SA}_{f}(V)$. We present some ways to obtain new SAF-accessible modules from old ones.

Proposition 4.2. Assume that V is an R-module and $\left(V_{i} \mid i \in I\right)$ is a family of submodules of V with $V=\bigcup_{i \in I} V_{i}$. Assume that this family is upwardly directed, i.e., for every $i, j \in I$ there is some $k \in I$ with $V_{i} \subset V_{k}, V_{j} \subset V_{k}$. Then, if every V_{i} is SA_{f}-hereditary, V also is SA_{f}-hereditary; and if every $\mathrm{SA}_{f}-\mathrm{Kdim}\left(V_{i}\right) \leq \theta$, then V also has $\mathrm{SA}_{f}-\mathrm{Kdim} \leq \theta$.

Proof. a): Assume that the V_{i} are SA_{f}-hereditary. Let $W \in \mathrm{SA}_{f}(V), W^{\prime} \in S A(V)$ and $W^{\prime} \subset W$. Since W is finitely generated, there exists some $i \in I$ with $W \subset V_{i}$. Both W and W^{\prime} are in $\mathrm{SA}(V)$, and so are SA in V_{i}. Because V_{i} is SA_{f}-hereditary and W is finitely generated, W^{\prime} also is finitely generated.
b): Assume now that V has $\mathrm{SA}_{f}-\mathrm{Kdim} \leq \theta$. Given a descending chain $\left(W_{i} \mid i \in I\right)$ in $\mathrm{SA}_{f}(V)$ then for any W_{0} there exist some $i \in I$ with $W_{0} \in \mathrm{SA}_{f}\left(V_{i}\right)$. By the same argument as above all $W_{i} \in \mathrm{SA}_{f}\left(V_{i}\right)$ for all $i>i_{0}$. Since $\mathrm{SA}_{f}-\operatorname{Kdim}\left(V_{i}\right) \leq \theta$, the chain is θ-stable.

For later reference we also quote an obvious fact.
Lemma 4.3. Assume again that V is the union of an upward directed family $\left(V_{i} \mid i \in I\right)$ of submodules. If U is a finitely generated submodule of V then $U \subset V_{i}$ for some $i \in I$.

Proposition 4.4. Assume that a direct decomposition $V=\bigoplus_{i \in I} V_{i}$ of an R-module V is given. If each V_{i} is SA_{f}-hereditary, then V is SA_{f}-hereditary. If each $\mathrm{SA}_{f}-\operatorname{Kdim}\left(V_{i}\right) \leq \theta$, then V has $\mathrm{SA}_{f}-\mathrm{Kdim} \leq \theta$.

Proof. a) It is immediate from the definition of the summand absorbing property (cf. (SA)) that the SA-submodules of V are the direct sums $\bigoplus_{i \in I} W_{i}$ with each W_{i} an SA-submodule of V_{i}. It follows by use of Lemma 4.3, that the finitely generated SA-submodules of V are the direct sums $\bigoplus_{i \in J} W_{i}$ with $W_{i} \in \mathrm{SA}_{f}\left(V_{i}\right)$ and $J \subset I$ finite.
b) If the modules V_{i} are SA_{f}-hereditary and $W=\bigoplus_{i \in J} W_{i} \in \mathrm{SA}_{f}(V)$, then every SAsubmodule W^{\prime} of W has the form $W^{\prime}=\bigoplus_{i \in J} W_{i}^{\prime}$ with $W_{i}^{\prime} \subset W_{i}$, and so $W_{i}^{\prime} \in \mathrm{SA}_{f}\left(V_{i}\right)$, whence $W^{\prime} \in \mathrm{SA}_{f}(V)$. Thus V is SA_{f}-hereditary.
c) Assume now that each $\mathrm{SA}_{f}-\mathrm{K} \operatorname{dim}\left(V_{i}\right) \leq \theta$ and I is finite. Let $\left(W_{k}^{\prime} \mid k \in \mathbb{N}_{0}\right)$ be a decreasing chain in $\mathrm{SA}_{f}(V)$. We want to verify that this chain is θ-stable. We have $W_{k}^{\prime}=\bigoplus_{i \in I} W_{i, k}^{\prime}$ with $W_{i, k}^{\prime} \in \mathrm{SA}_{f}\left(V_{i}\right)$. Since $\mathrm{SA}_{f}-\mathrm{Kdim}\left(V_{i}\right) \leq \theta$, each chain $\left(W_{i, k}^{\prime} \mid k \in \mathbb{N}_{0}\right)$ is θ-stable. It follows that the chain $\left(W_{k}^{\prime}\right)$ is θ-stable. This proves that V has $\mathrm{SA}_{f}-\mathrm{Kdim} \leq \theta$ for I finite. If I is infinite, and all $\mathrm{SA}_{f}-\operatorname{Kdim}\left(V_{i}\right) \leq \theta$, then for every finite $J \subset I$ the submodule $V_{J}:=\bigoplus_{i \in J} V_{i}$ has $\mathrm{SA}_{f}-\mathrm{Kdim} \leq \theta$, as proved. Invoking Proposition 4.2 we see that V has SA_{f}-Kdim $\leq \theta$.

Theorem 4.5. Assume that U is an $\Sigma \mathrm{SA}_{f}$-submodule of an R-module V.
a) If V is SA_{f}-hereditary, then U is SA_{f}-hereditary, and

$$
\begin{equation*}
\Sigma \mathrm{SA}_{f}(U)=\left\{X \in \Sigma \mathrm{SA}_{f}(V) \mid X \subset U\right\} \tag{4.1}
\end{equation*}
$$

b) If V is $S A F$-accessible then U is SAF-accessible.

Proof. We choose a family $\left(W_{i} \mid i \in I\right)$ in $\mathrm{SA}_{f}(V)$ with $U=\sum_{i \in I} W_{i}$. a): Let $W \in \operatorname{SA}_{f}(U), W^{\prime} \in \mathrm{SA}(U)$ and $W^{\prime} \subset W$. Then

$$
W=\sum_{i \in I} W \cap W_{i}, \quad W^{\prime}=\sum_{i \in I} W^{\prime} \cap W_{i} .
$$

Every W_{i} is in $\mathrm{SA}(U)$ and so $W \cap W_{i}$ and $W^{\prime} \cap W_{i}$ are in $\mathrm{SA}(U)$. These modules are contained in the SA-submodule W_{i} of U and so are SA in W_{i}. Since W_{i} is SA in V, they are SA in V. Moreover, since V is SA_{f}-hereditary, all the modules $W \cap W_{i}, W^{\prime} \cap W_{i}$ are finitely generated. Since $W=\sum_{i \in I} W \cap W_{i}$ this proves that W is an SA_{f}-sum in V, whence $\mathrm{SA}_{f}(U) \subset \Sigma \mathrm{SA}_{f}(V)$, and thus

$$
\Sigma \mathrm{SA}_{f}(U) \subset \Sigma \mathrm{SA}_{f}(V)
$$

On the other hand, every SA_{f}-submodule X of V which is contained in U is a SA_{f}-sum in U. This proves assertion (4.1).

Moreover, if I is finite, we conclude from $W^{\prime}=\sum_{i \in I} W^{\prime} \cap W_{i}$ that $W^{\prime} \in \mathrm{SA}_{f}(U)$, since all $W^{\prime} \cap W_{i} \in \mathrm{SA}_{f}(U)$. This proves for I finite that U is SA_{f}-hereditary. If I is infinite, then the R-module $U_{J}:=\sum_{i \in J} W_{i}$ is SA_{f}-hereditary for every finite $J \subset I$. Invoking Proposition 4.2 we see that U is SA_{f}-hereditary.
b): Assume now that V is SAF-accessible. We first consider the case that I is finite. We proceed as in the last part of the proof of Proposition 4.4. Assume that ($W_{k}^{\prime} \mid k \in \mathbb{N}_{0}$) is a decreasing chain in $\mathrm{SA}_{f}(U)$ with $W_{0}^{\prime}=W$. For every $i \in I$ the modules $W_{i} \cap W_{k}^{\prime}$ are SA_{f}-submodules of V, as just proved, and so ($W_{i} \cap W_{k}^{\prime} \mid k \in \mathbb{N}_{0}$) is a decreasing chain in $\mathrm{SA}_{f}(V)$. Since V has SA_{f}-Kdim $\leq \theta$, all these chains ($W_{i}^{\prime} \cap W_{k}^{\prime} \mid k \in \mathbb{N}$) with i running through the finite set I, are θ-stable. Since $W_{k}^{\prime}=\sum_{i \in I} W \cap W_{k}^{\prime}$ it follows that the chain ($W_{k}^{\prime} \mid k \in \mathbb{N}$) is θ-stable. This proves that U has SA_{f}-Kdim $\leq \theta$ and so is SAF-accessible.

If I is infinite, then for any finite $J \subset I$ the module $U_{J}=\sum_{i \in J} W_{i}$ is SAF-accessible, and so U is SAF-accessible by Proposition 4.2,

5. The height filtration

Again let V be any LZS module over a semiring R.
Definition 5.1. Given a submodule U and an $S A$-submodule W of V, we say that U dominates W, if W is contained in the convex hull \widehat{U} of U in V, i.e., in the smallest $S A$ submodule of V containing U, cf. Proposition 1.8.

Let On denote the set of ordinal numbers of cardinality $\leq 2^{2^{|V|}}$. In $\oint 6$ we will gain some insight in the dominance relation for submodules $W, U \in \Sigma \mathrm{SA}_{f}(V)$ (cf. Notations 3.8) by use of a "height function"

$$
h: \Sigma \mathrm{SA}_{f}(V) \rightarrow \mathrm{On},
$$

to be established now. The modules V, in which this works well, are the SAF-accessible modules defined in $\S 4$.

We first construct a family $\left(V_{t}^{0} \mid t \leq \omega\right)$ and a strictly increasing chain $V_{0} \varsubsetneqq V_{1} \varsubsetneqq \cdots \varsubsetneqq V_{\omega}$ in $\Sigma \mathrm{SA}_{f}(V)$, indexed by ordinal numbers. We proceed by transfinite induction. We do not assume anything about the R-module V, except that V is LZS, as always, but it seems that the construction is really useful only if V has some SA-Kdim.

Construction 5.2. Let

$$
\begin{aligned}
V_{0} & :=V_{0}^{0}=\{0\} \\
V_{1}^{0} & :=\text { the sum of all minimal } W \neq 0 \text { in } \mathrm{SA}_{f}(V), \\
V_{1} & :=V_{0}+V_{1}^{0}=V_{1}^{0}
\end{aligned}
$$

Assume that V_{s}^{0} and V_{s} are already defined for all $s<t \in \mathrm{On}$.
A) Assume that t is not a limit ordinal, so $t=\tau+1$ for a unique $\tau \in \mathrm{On}$.

Case I: There exists no $S A$-critical $W \in \mathrm{SA}_{f}(V)$ with $W \not \subset V_{\tau}$. The construction stops with $\omega:=\tau$.
Case II: Otherwise. We define $V_{t}^{0}=V_{\tau+1}^{0}$ as the sum of all $W \in \mathrm{SA}_{f}(V)$ which are $S A$-critical and not contained in V_{τ}, and define $V_{t}:=V_{\tau}+V_{\tau+1}^{0}$.
B) Assume that t is a limit ordinal. We put $V_{t}^{0}=\{0\}, V_{t}=\bigcup_{s<t} V_{s}$.

Note that $V_{s} \varsubsetneqq V_{t}$ for all $s<t \leq \omega$, and that all modules V_{t}^{0} and V_{t} are elements of $\Sigma \mathrm{SA}_{f}(V)$. The strictly ascending chain $\left(V_{t}\right)$ stops with a module $V_{\omega}, \omega \in$ On, which may or may not be a limit ordinal.

Definition 5.3.

a) The height $h_{V}(U)$ of a submodule U of V with $U \subset V_{\omega}$ is the minimum of all ordinals $t \leq \omega$ with $U \subset V_{t}$. This minimum exists, since the set $\{t \in \mathrm{On} \mid t \leq \omega\}$ is well ordered.
b) Clearly, if $U \subset V_{\omega}$ and $t \in O_{n}, t \leq \omega$, then

$$
\begin{equation*}
h_{V}(U) \leq t \quad \Leftrightarrow \quad U \subset V_{t} . \tag{5.1}
\end{equation*}
$$

We call the family $\left(V_{t} \mid t \leq \omega\right)$ the height filtration in V (or: of V_{ω}).
Given any module V over a semiring R we denote by \widetilde{V} the sum of all $W \in \mathrm{SA}_{f}(V)$. This is the top element of the poset $\Sigma \mathrm{SA}_{f}(V)$. Clearly \widetilde{V} is also the union of all $U \in \Sigma_{f} \mathrm{SA}_{f}(V)$ (cf. Notations 3.8). If V is finitely generated then, of course, $\widetilde{V}=V$.

Theorem 5.4. Assume that $\operatorname{SA}-\operatorname{Kdim}(V) \leq \theta$. Then V_{ω} coincides with the maximal $\mathrm{SA}_{f^{-}}$ sum \widetilde{V} in V.

Proof. Clearly $V_{\omega} \subset \widetilde{V}$. Suppose that $V_{\omega} \neq \widetilde{V}$. Then there exists some $W \in \operatorname{SA}_{f}(V)$ with $W \not \subset V_{\omega}$ Since $\operatorname{SA-Kdim}(V) \leq \theta$, there exists some SA-critical $W^{\prime} \in \mathrm{SA}_{f}(V)$ with $W^{\prime} \subset W$, with $W^{\prime} \not \subset V_{\omega}$. But this contradicts the definition of V_{ω}. Thus $V_{\omega}=\widetilde{V}$.

In the following we usually write $h(U)$ instead of $h_{V}(U)$, whenever it is clear from the context, which R-module V is under consideration. We concentrate on a study of the heights of the SA_{f}-sums in V. We will assume almost everywhere that $\operatorname{SA}-\operatorname{Kdim}(V) \leq \theta$, so that we catch all SA_{f}-sums in the height filtration due to Theorem 5.4.

Proposition 5.5. Assume that $\operatorname{SA}-\operatorname{Kdim}(V) \leq \theta$. Assume furthermore that $\left(U_{\lambda} \mid \lambda \in \Lambda\right)$ is a family in $\Sigma \mathrm{SA}_{f}(V)$ and $U:=\sum_{\lambda \in \Lambda} U_{\lambda}$. Then

$$
\begin{equation*}
h(U)=\sup _{\lambda \in \Lambda} h\left(U_{\lambda}\right) . \tag{5.2}
\end{equation*}
$$

Proof. Let $t:=h(U)$. Of course $h\left(U_{\lambda}\right) \leq t$ for all $\lambda \in \Lambda$. Suppose there exists an ordinal number $\tau<t$ with $h\left(U_{\lambda}\right) \leq \tau$ for all $\lambda \in \Lambda$. Then $U_{\lambda} \subset V_{\tau}$ for all λ, and so $U \subset V_{\tau}$. But this means that $h(U) \leq \tau$, a contradiction. Thus t is the least upper bound of $\left(h\left(U_{\lambda}\right) \mid \lambda \in \Lambda\right)$.

Corollary 5.6. Assume again that $\operatorname{SA}-\operatorname{Kdim}(V) \leq \theta$ and $\left(U_{\lambda} \mid \lambda \in \Lambda\right)$ is a family in $\Sigma \mathrm{SA}_{f}(V)$. Assume furthermore that the height of $U:=\sum_{\lambda \in \Lambda} U_{\lambda}$ is not a limit ordinal. Then

$$
\begin{equation*}
h(U)=\max _{\lambda \in \Lambda} h\left(U_{\lambda}\right) . \tag{5.3}
\end{equation*}
$$

Proof. Let $t:=h(U), t_{\lambda}:=h\left(U_{\lambda}\right)$ for $\lambda \in \Lambda$. Then $\sup _{\lambda \in \Lambda} t_{\lambda}=r$, as we have seen. If t is not a limit ordinal, this implies that there exists $\lambda \in \Lambda$ with $t_{\lambda}=t$.

In the following proposition we do not need the assumption that $\operatorname{SA}-\operatorname{Kdim}(V) \leq \theta$.
Proposition 5.7. Assume that U is a sum of finitely many finitely generated $S A$-submodules of V (i.e., $U \in \Sigma_{f} \mathrm{SA}_{f}(V)$, cf. Definition 3.8). Then $h(U)$ is not a limit ordinal.

Proof. U has a finite system S of generators, $S=\left\{s_{1}, \ldots, s_{m}\right\}$. For each $i \in\{1, \ldots, m\}$ there is a smallest ordinal t_{i} with $s_{i} \in V_{t_{i}}$, and clearly t_{i} is not a limit ordinal. Let t_{k} denote the largest of the t_{i}. This is the smallest ordinal τ of $\leq \omega$ with $S \subset V_{\tau}$, whence $U \subset V_{\tau}$. Thus $h(U)=t_{k}$.

Definition 5.8.

a) Assume that t is an ordinal number with $t \leq \omega$, and that t is not a limit ordinal. As common we denote the ordinal number τ with $\tau+1=t$ by $t-1$. We call a module $W \in \mathrm{SA}_{f}(V) t$-critical, if W is $S A$-critical with $W \not \subset V_{t-1}$. We denote the set of all t-critical SA_{f}-modules in V by $\mathrm{SA}_{t}(V)$.
b) If $\tau \leq \omega$ is a limit ordinal we put $\mathrm{SA}_{\tau}(V):=\emptyset$.

We furthermore define

$$
\operatorname{SA}_{\min }(V):=\bigcup_{t \leq \omega} \mathrm{SA}_{t}(V)
$$

and we call the elements of this set the height-critical SA_{f}-submodules of V.

Theorem 5.9. Assume that V is SAF-accessible, and that U is an $S A$-submodule of V of height $h(U)=t$. Then for any $\tau \leq t$ the following holds:

$$
\begin{gather*}
\operatorname{SA}_{\tau}(U)=\left\{W \in \operatorname{SA}_{\tau}(V) \mid W \subset U\right\} \tag{5.4}\\
U_{\tau}=U \cap V_{\tau} . \tag{5.5}
\end{gather*}
$$

Proof. We verify this by induction on τ. For $\tau=0$ both assertions are obvious. Let $\tau>0$, and assume first that τ is not a limit ordinal and (5.4), (5.5) are true for $\tau-1$. If W is an SA-submodule of U, then

$$
W \in \mathrm{SA}_{f}(V) \quad \Leftrightarrow \quad W \in \mathrm{SA}_{f}(U)
$$

since U is in $\mathrm{SA}(V)$. We conclude from $U_{\tau-1}=U \cap V_{\tau-1}$ that $W \in \mathrm{SA}_{\tau}(U)$ iff $W \not \subset U_{\tau-1}$ iff $W \not \subset V_{t-1}$ iff $W \in \mathrm{SA}_{\tau}(V)$. This proves (5.4) for the ordinal τ. Let $\left\{W_{i} \mid i \in I\right\}$ denote the set of all τ-critical submodules of U and $\left\{W_{k}^{\prime} \mid k \in K\right\}$ denote the set of τ-critical submodules of V not contained in U. Thus

$$
\begin{aligned}
U_{\tau} & =U_{\tau-1}+\sum_{i \in I} W_{i}, \\
V_{\tau} & =V_{\tau-1}+\sum_{i \in I} W_{i}+\sum_{k \in K} W_{k}^{\prime},
\end{aligned}
$$

whence

$$
\begin{aligned}
U \cap V_{\tau} & =U \cap V_{\tau-1}+\sum_{i \in I} W_{i}+\sum_{k \in K} U \cap W_{k}^{\prime} \\
& =U_{\tau-1}+\sum_{i \in I} W_{i}+\sum_{k \in K} U \cap W_{k}^{\prime} \\
& =U_{\tau}+\sum_{k \in K} U \cap W_{k}^{\prime} .
\end{aligned}
$$

Now $U \cap W_{k}^{\prime} \in \mathrm{SA}_{f}(V)$ since V is SA_{f}-hereditary and $U \cap W_{k}^{\prime} \varsubsetneqq W_{k}^{\prime}$. Due to the τ criticality of W_{k}^{\prime} it follows that $U \cap W_{k}^{\prime} \subset V_{\tau-1}$, and thus $U \cap W_{k}^{\prime} \subset U \cap V_{\tau-1}=U_{\tau-1}$, so that altogether we obtain that $U \cap V_{\tau}=U_{\tau}$.

Assume finally that τ is a limit ordinal. Then $\mathrm{SA}_{\tau}(U)=\mathrm{SA}_{\tau}(V)=\emptyset$, and so (5.4) holds trivially. By induction hypothesis $U \cap V_{\sigma}=U_{\sigma}$ for $\sigma<\tau$. Thus

$$
U \cap V_{\tau}=U \cap\left(\sum_{\sigma<\tau} V_{\sigma}\right)=\sum_{\sigma<\tau} U \cap V_{\sigma}=\sum_{\sigma<\tau} U_{\sigma}=U_{\tau}
$$

which proves (5.5).
Corollary 5.10. Assume again that V is SAF-accessible. Let $U \in \Sigma \mathrm{SA}_{f}(V)$. Recall from Theorem 4.5.(b) that U is SAF-accessible. Let $t:=h_{V}(U)$.
a) If $U^{\prime} \in \Sigma \mathrm{SA}_{f}(U)$ then $U^{\prime} \in \Sigma \mathrm{SA}_{f}(V)$ and $h_{U}\left(U^{\prime}\right)=h_{V}\left(U^{\prime}\right)$. In particular $t=h_{U}(U)$.
b) U is the sum of all modules $W \in \operatorname{SA}_{\tau}(V)$ with $W \subset U, \tau \leq t$.

Proof. a): The height $h_{U}\left(U^{\prime}\right)$ is the minimal ordinal τ such that $U^{\prime} \subset U_{\tau}$. Since $U_{\tau}=U \cap V_{\tau}$ (cf. (5.5)), this is also the minimal ordinal τ with $U^{\prime} \subset V_{\tau}$, and so $h_{U}\left(U^{\prime}\right)=h_{V}\left(U^{\prime}\right)$.
b): We have $t=h_{U}(U)$. Now U is the sum of all $W \in \operatorname{SA}_{\tau}(U)$ with $\tau \leq t$, as is clear by Construction 5.2 and Theorem (5.4. By (5.4) these are the $W \in \mathrm{SA}_{\tau}(V)$ with $W \subset U$ and $\tau \leq t$.

6. Primitive SA_{f}-Modules

Definition 6.1. Assume that $\mathrm{SA}-\operatorname{Kdim}(V) \leq \theta$.
a) We call a module $W \in \mathrm{SA}_{f}(V)$ primitive in V if W is τ-critical for some $\tau \leq \omega$ (and so $W \subset V_{\tau}^{0}, h(W)=\tau$), but $W \not \subset \widehat{V}_{\tau-1}$ (i.e., W is not dominated by $V_{\tau-1}$, cf. Definition 5.1). We define

$$
\begin{align*}
\mathrm{SA}_{\tau, \text { prim }}(V):= & \text { set of all primitive } W \in \mathrm{SA}_{f}(V) \text { of height } \tau . \tag{6.1}\\
& \operatorname{SA}_{\text {prim }}(V):=\bigcup_{\tau \leq \omega} \operatorname{SA}_{\tau, \operatorname{prim}}(V) . \tag{6.2}
\end{align*}
$$

b) If $T \in \Sigma \mathrm{SA}_{f}(V), h(T)=r$, we set for $\tau \leq t$

$$
\begin{equation*}
\operatorname{SA}_{\text {prim }}(T, V)=\left\{W \in \operatorname{SA}_{\text {prim }}(V) \mid W \subset T\right\} \tag{6.3}
\end{equation*}
$$

and for $\tau \leq t$

$$
\begin{equation*}
\operatorname{SA}_{\tau, \operatorname{prim}}(T, V)=\left\{W \in \operatorname{SA}_{\tau, \text { prim }}(V) \mid W \subset T\right\} . \tag{6.4}
\end{equation*}
$$

Theorem 6.2. Assume that V is $S A F$-accessible. Let $T, U \in \Sigma \mathrm{SA}_{f}(V)$. Assume furthermore that all primitive SA_{f}-submodules of V, which are contained in T, are also contained in U. Then $T \subset \widehat{U}$.
Proof. We know by Corollary 5.10, (b) that T is the sum of all $W \in \mathrm{SA}_{\tau}(T)$ with $\tau \leq t:=$ $h(T)$. Furthermore, it is clear by Definition 7.1, that every $W \in \mathrm{SA}_{\tau}(T)$ is dominated by the sum X_{τ} of all $W^{\prime} \in \operatorname{SA}_{\text {prim }}(T, V)$ with $h\left(W^{\prime}\right) \leq \tau$. Since we assume that every $W^{\prime} \in \mathrm{SA}_{\text {prim }}(T, V)$ is contained in U, it follows that $T \subset\left(\sum_{\tau \leq t} X_{\tau}\right)^{\wedge} \subset \widehat{U}$.
Theorem 6.3. Assume conversely that $T \subset \widehat{U}$. Then all primitive SA_{f}-submodules of V which are contained in T are contained in U.
Proof. Let $W \in \operatorname{SA}_{\tau, \text { prim }}(T)$ be given, i.e. $W \in \operatorname{SA}_{f}(V), h(W)=\tau, W \subset T, W$ primitive in V. We have $W \subset V_{\tau}^{0}$, $W \not \subset \widehat{V}_{\tau-1}$, but $W \subset \widehat{U}$. This is only possible if $W \subset U$ (and so $\left.W \in \operatorname{SA}_{\tau, \operatorname{prim}}(U)\right)$.
Definition 6.4. The primitivity socle $\operatorname{prsoc}(T)$ of a module $T \in \Sigma \mathrm{SA}_{f}(V)$ is the sum of all primitive SA_{f}-submodules W of V contained in T.

We state an immediate consequence of Theorems 6.2 and 6.3 .
Corollary 6.5. Assume that V is $S A F$-accessible. For modules $T, U \in \Sigma \mathrm{SA}_{f}(V)$ the following are equivalent:
(1) $\widehat{T} \subset \widehat{U}$,
(2) $T \subset \widehat{U}$,
(3) $\operatorname{prsoc}(T) \subset \operatorname{prsoc}(U)$.

Proof. (1) $\Leftrightarrow(2)$: Obvious, cf. Proposition 1.8.
$(2) \Leftrightarrow(3)$: Clear by Theorems 6.2 and 6.3.
Proposition 6.6. Assume again that V is SAF-accessible. Let $T \in \Sigma \mathrm{SA}_{f}(V)$. The primitivity socle $\operatorname{prsoc}(T)$ is the smallest module $U \in \Sigma \mathrm{SA}_{f}(V)$ contained in T which dominates T.
Proof. Let $T_{0}:=\operatorname{prsoc}(T)$. By definition of the primitivity socle it is evident that $\operatorname{prsoc}\left(T_{0}\right)=$ T_{0}, and thus $\operatorname{prsoc}(T)=\operatorname{prsoc}\left(T_{0}\right)$. It follows by Corollary 6.5, that $\widehat{T}=\widehat{T_{0}}$, and so T_{0} dominates T. If $U \in \Sigma \operatorname{SA}_{f}(V)$ and $U \subset T \subset \widehat{U}$, then $\widehat{U} \subset \widehat{T} \subset \widehat{U}$, and so $\widehat{U}=\widehat{T}$. Again by Corollary 6.5 we conclude that $\operatorname{prsoc}(U)=\operatorname{prsoc}(T)=T_{0}$. Thus certainly $T_{0} \subset U$.

7. Generating SA-submodules by use of additive spines

Given an R-module V and a set S of generators of V we want to establish a new set T of generators of V, which is "small" in some sense if S is "small", and gives us sets of generators of all SA-submodules W of V in a coherent way. Recall SA-adapted from Definition 3.6.

We will obtain a reasonable SA-adapted set of generators T from a given set of generators S by employing the so-called additive spine M of a module (Definition 8.1) the semiring R (Definition (7.2). In the special case that both M and S are finite it will turn out that also T is finite, and so all SA-submodules W of V are generated by $|T|$ elements.

We first define additive spines of R, state basic facts about them, and give first examples.
Notation 7.1. Given (nonempty) subsets A, B of R, we denote the set of products ab with $a \in A, b \in B$ by $A B$ (or $A \cdot B$). Similarly, if $A \subset R, X \subset V$ then $A X$ denotes the set of products ax with $a \in A, x \in X$. Furthermore $\sum^{\infty} A$ and $\sum^{\infty} X$ denote the set of all finite sums of elements of A in R and of X in V respectively. Admitting also the empty sum of elements of A or X, we always have $0_{R} \in \sum^{\infty} A, 0_{V} \in \sum^{\infty} X$. If necessary we write more precisely $\sum_{R}^{\infty} A$ and $\sum_{V}^{\infty} X$ instead of $\sum^{\infty} A$ and $\sum^{\infty} X$.

In this notation a set $S \subset V$ generates the R-module V if $V=\sum^{\infty} R S$.
Definition 7.2. Given a subset M of R,
a) We define the set

$$
\widetilde{M}:=\{x \in R \mid \exists y, z \in R: y x \in M, z y x=x\},
$$

which we call the halo of M in R.
b) If the halo \widetilde{M} generates R additively, i.e., $R=\sum^{\infty} \widetilde{M}$, we call M an additive spine of R.

We state some facts about halos which are immediate consequences of Definition [7.2, a.

Remarks 7.3.

i) $M \subset \widetilde{M}$ for any set $M \subset R$.
ii) If $M \subset N \subset R$ then $\widetilde{M} \subset \widetilde{N}$.
iii) If $\left(M_{i} \mid i \in I\right)$ is a family of subsets of R, then

$$
\left(\bigcup_{i \in I} M_{i}\right)^{\sim}=\bigcup_{i \in I} \widetilde{M}_{i}
$$

iv) $\{0\}^{\sim}=\{0\}$ and $(M \backslash\{0\})^{\sim}=\widetilde{M}$.

Due to the last remark we may assume in any study of halos that $0 \in M$ or $0 \notin M$, whatever is more convenient.

Here are the perhaps most basic examples of halos deserving interest.
Example 7.4. Let $M=\left\{1_{R}\right\}$. Then \widetilde{M} is the set of left invertible elements of R. Indeed, if $x \in \widetilde{M}$, then there exists $y \in R$ with $y x=1$. Conversely, if x is left-invertible there exists $y \in R$ with $y x=1$, and so $x y x=x$, which proves that $x \in \widetilde{M}$.

Example 7.5. Let $M=\{e\}$ with e an idempotent of R. If $x \in \widetilde{M}$, then there exist $y, z \in R$ with $y x=e, z e=x$. It follows that $x e=x$, yielding the von Neumann condition $x y x=x$. Conversely, if $y x=e$ and $x y x=x$, then clearly $x \in \widetilde{M}$. This proves that

$$
\{e\}^{\sim}=\{x \in R \mid \exists y \in R: y x=e, x y x=x\} .
$$

Let $\operatorname{Id}(R)$ denote the set of all idempotents of R. Starting from Example [7.5, we obtain the following fact.

Proposition 7.6. If R is any semiring then

$$
\operatorname{Id}(R)^{\sim}=\{x \in R \mid \exists y \in R: x y x=x\} .
$$

Proof. $\operatorname{Id}(R)^{\sim}$ is the union of the sets $\{e\}^{\sim}$ with e an idempotent of R (cf. Remark [7.3.iii). Thus it is clear from Example 2.6 that for every $x \in \operatorname{Id}(R)^{\sim}$ there exists some $y \in R$ with $x y x=x$.

Conversely, if $x y x=x$, then $y x \cdot y x=y x$, and so $e:=y x$ is an idempotent of R. Moreover $x e=x$, and so $x \in\{e\}^{\sim}$.

We state an immediate consequence of this proposition.
Corollary 7.7. For any subset M of R we have

$$
[M \cap \operatorname{Id}(R)]^{\sim}=\{x \in \widetilde{M} \mid \exists y \in R: x y x=x\}
$$

and \widetilde{M} is the disjoint union of this set and $[M \backslash \operatorname{Id}(R)]^{\sim}$.
The set $[M \cap \operatorname{Id}(R)]^{\sim}$ may be regarded as the "easy part" of the halo \widetilde{M}.
We are ready for a central result.
Theorem 7.8. Assume that S is a set of generators of a (left) R-module V, and M is an additive spine of R. Then any $S A$-submodule W of V is generated by the set $W \cap(M S)$.
Proof. Since $V=\sum^{\infty} R S$ and $R=\sum^{\infty} \widetilde{M}$, we have $V=\sum^{\infty} \widetilde{M} S$.
Let $w \in W, w \neq 0$, be given. Then

$$
\begin{equation*}
w=\sum_{i=1}^{n} x_{i} s_{i} \tag{A}
\end{equation*}
$$

with $n \in \mathbb{N}, s_{i} \in S, x_{i} \in \widetilde{M}$. Since W is in $\operatorname{SA}(V)$, it follows that

$$
x_{i} s_{i} \in W \quad \text { for } 1 \leq i \leq n .
$$

Now choose $y_{i}, z_{i} \in R$ such that $m_{i}:=y_{i} x_{i} \in M$ and $x_{i}=z_{i} m_{i}$. Then

$$
\begin{equation*}
y_{i}\left(x_{i} s_{i}\right)=m_{i} s_{i} \in W \cap(M S) \tag{B}
\end{equation*}
$$

and

$$
z_{i} m_{i} s_{i}=z_{i} y_{i} x_{i} s_{i}=x_{i} s_{i}
$$

From (A) we obtain that

$$
\begin{equation*}
w=\sum_{i=1}^{n} z_{i}\left(m_{i} s_{i}\right) . \tag{C}
\end{equation*}
$$

We conclude from (B) and (C) that $W \cap(M S)$ generates W.
Corollary 7.9. Assume that R has a finite additive spine M and V has a finite set of generators S. Then every $S A$-submodule W of V is finitely generated, more precisely, generated by at most $|M| \cdot|S|$ elements (independent of the choice of $W!$).

Theorem 7.10. Assume that V is a module over a semiring R which is additively generated by the set of its left invertible elements. Then every set of generators S of V is $S A$-adapted.

Proof. We read off from Example 7.4 that $\left\{1_{R}\right\}$ is an additive spine of R. So by Theorem [7.8 every SA-submodule W of V is generated by $W \cap S=W \cap\left(1_{R} S\right)$.

We take a look at additive spines of matrix semirings.
Example 7.11. Assume that C is a semiring which is additively generated by $\left\{1_{C}\right\}$,

$$
C=\sum^{\infty}\left\{1_{C}\right\} .
$$

In other terms, the unique homomorphism $\varphi: \mathbb{N}_{0} \rightarrow C$ with $\varphi(1)=1_{C}$ is surjective. Then the semiring

$$
R=M_{n}(C)=\sum_{i, j=1}^{n} C e_{i j}
$$

of $(n \times n)$-matrices with entries in C, and $e_{i j}$ the usual matrix units, has the additive spine

$$
D:=\left\{e_{11}, e_{22}, \ldots, e_{n n}\right\}
$$

Indeed, for every $j \in\{1, \ldots, n\}$

$$
\left\{e_{j j}\right\}^{\sim} \supset\left\{e_{i j} \mid 1 \leq i \leq n\right\},
$$

since $e_{j i} e_{i j}=e_{j j}, e_{i j} e_{j j}=e_{i j}$, and so $\widetilde{D}=\bigcup_{j}\left\{e_{j j}\right\}^{\sim}$ contains the set $E:=\left\{e_{i j} \mid 1 \leq i, j \leq n\right\}$ of all matrix units, which by the nature of C generates $M_{n}(C)$ additively.

This example can be amplified to a theorem about additive spines in arbitrary matrix rings $M_{n}(A)$ by use of a general principle to "multiply" additive spines, which runs as follows:

Proposition 7.12. Assume that R_{1} and R_{2} are subsemirings of a semiring R, such that R is additively generated by $R_{1} R_{2}$, i.e., $R=\sum^{\infty} R_{1} R_{2}$. Assume furthermore that the elements of R_{1} commute with those of R_{2}. Assume finally that M_{i} is an additive spine of R_{i}. Let \widetilde{M}_{i} denote the halo of M_{i} in $R_{i}(i=1,2)$. Then $\widetilde{M}_{1} \widetilde{M}_{2}$ is contained in the halo $\left(M_{1} M_{2}\right)^{\sim}$ of $M_{1} M_{2}$ in R, and $M_{1} M_{2}$ is an additive spine of R.

Proof. Let $x_{i} \in \widetilde{M}_{i}(i=1,2)$ be given. We have elements y_{i}, z_{i} of R_{i} with $m_{i}:=y_{i} x_{i} \in M_{i}$ and $z_{i} m_{i}=x_{i}$. Now

$$
\left(y_{1} y_{2}\right)\left(x_{1} x_{2}\right)=\left(y_{1} x_{1}\right)\left(y_{2} x_{2}\right)=m_{1} m_{2}
$$

and

$$
\left(z_{1} z_{2}\right)\left(m_{1} m_{2}\right)=\left(z_{1} m_{1}\right)\left(z_{2} m_{2}\right)=x_{1} x_{2}
$$

This proves that $x_{1} x_{2} \in\left(M_{1} M_{2}\right)^{\sim}$. It follows that

$$
\left(\sum^{\infty} \widetilde{M}_{1}\right) \cdot\left(\sum^{\infty} \widetilde{M}_{2}\right)=R_{1} R_{2}
$$

and then that

$$
R=\sum^{\infty} R_{1} R_{2}=\sum^{\infty} \widetilde{M}_{1} \widetilde{M}_{2}
$$

Theorem 7.13. Assume that R is the semiring of $(n \times n)$-matrices over any semiring A, so

$$
R:=M_{n}(A)=\sum_{i, j=1}^{n} A e_{i j}
$$

with the usual matrix units $e_{i j}$. Let N be an additive spine of A. Then the set $M:=\bigcup_{i=1}^{n} N e_{i i}$, consisting of the diagonal matrices with entries in N, is an additive spine of R.
Proof. Let C denote the smallest subsemiring of $A, C=\left\{n \cdot 1_{A} \mid n \in \mathbb{N}\right\}$. We have seen that $R_{1}:=M_{n}(C)$ has the additive spine $D:=\left\{e_{i i} \mid 1 \leq i \leq n\right\}$ (Example 7.11). Let $R_{2}:=A \cdot 1_{R}$. This is the subsemiring of R consisting of all matrices $a I$ with $a \in A$, where I is the identity matrix. It has the additive spine $N \cdot 1_{R_{2}}$. Now $R=\sum R_{1} R_{2}$, and the elements of R_{1} commute with those of R_{2}. Thus, by Proposition 7.12, R has the additive spine $D \cdot\left(N 1_{R_{2}}\right)=\bigcup_{i=1}^{n} N e_{i i}$.

Recalling Theorem 7.8 we obtain
Theorem 7.14. Assume that V is an $M_{n}(A)$-module, A any semiring, and S a system of generators of V. Assume furthermore that N is an additive spine of A. Then any $S A$ submodule W of $M_{n}(A)$ is generated by the set

$$
W \cap\left(\bigcup_{i=1}^{n} N e_{i i}\right)=\bigcup_{i=1}^{n} W \cap\left(N e_{i i}\right) .
$$

If N is finite then W can be generated by at most $n \cdot|N|$ elements.
The proof of Theorem 2.14 can be seen in a much wider context, as we explain now.
Definition 7.15. Let $S=(S, \cdot)$ be a monoid, in multiplicative notation. We call a subset T of S a spine of S (= monoid spine), if for any $s \in S$ there exist $s_{1}, s_{2} \in S$ such that $t:=s_{1} s \in T$ and $s_{2} t=s$.

Given any semiring A and monoid $S=(S, \cdot)$ we denote, as common, the monoidsemiring of S over A by $A[S]$.

In the case that the monoid S is without zero, i.e., S does not contain an absorbing element $0,(0 \cdot S=S \cdot 0=0$ for all $s \in S)$, the elements x of $R:=A[S]$ are the formal sums

$$
x=\sum_{s \in S} a_{s} s,
$$

with coefficients $a_{s} \in A$ uniquely determined by x, only finitely many non-zero. The multiplication is determined by the rule $(a s) \cdot(b t)=(a b)(s t)$ for $a, b \in A, s, t \in S$. Identifying $a=a \cdot 1_{S}, s=1_{A} \cdot s$, we regard A as a subsemiring of R and S as a submonoid of (R, \cdot).

If the monoid S has a zero $0=0_{S}$, we take for $R=A[S]$ the free A-module with base $S \backslash\{0\}$ and multiplication rule $(a s) \cdot(b t)=(a b)(s t)$ if $s t \neq 0_{S},(a s)(b t)=0$ otherwise. Now the nonzero elements of $R=A[S]$ are formal sums $\sum_{s \neq 0} a_{s} s$. We identify again $a=a \cdot 1_{S}$, $s=1_{A} \cdot s$ for $s \in S \backslash\{0\}$, and now also $0_{S}=0_{A}$. Then again A becomes a subsemiring of R and S a submonoid of (R, \cdot). We have $R=\sum^{\infty} A S$ in both cases.
Example 7.16. The matrix semiring $M_{n}(A)$ coincides with $A[S]$, where S is the monoid $\left\{e_{i j} \mid 1 \leq i, j \leq n\right\} \cup\{0\}$ with multiplication rule $e_{i j} e_{k l}=\delta_{j k} e_{i l}$. Note that S has the monoid spine $\left\{e_{11}, \ldots, e_{n n}\right\} \cup\{0\}$.

Theorem 7.17. Assume that S is a multiplicative monoid (with zero or without zero) and T is a spine of S. Assume furthermore that A is a semiring and N is an additive spine of A. Then $N \cdot T$ is an additive spine of $A[S]$.
Proof. Let $R:=A[S]$ and $R_{1}:=C[S] \subset R$, with C the image of the (unique) homomorphism $\mathbb{N}_{0} \rightarrow A$. It is obvious that $R_{1}=\sum^{\infty} S$ and that S is contained in the halo \widetilde{T} of T in R_{1}. Thus T is a spine of R_{1}. \{In fact it can be verified that $\left.\widetilde{T}=\widetilde{S}=S.\right\}$ Let $R_{2}:=A \subset R$. Then $R=\sum^{\infty} R_{1} \cdot R_{2}$ and the elements of R_{1} commute with those of R_{2}. The assertion follows from Proposition 7.12.

8. Halos and additive spines in R-modules

Halos and additive spines can be defined and studied on any R-module instead of the semiring R itself. Although at present perhaps of limited practical value, this will make the theory of generators of SA-submodules more transparent.

Definition 8.1. Assume that S is a subset of V.
a) The halo \widetilde{S} of S in V is the set of all $v \in V$ such that there exist $\lambda, \mu \in R$ with $\lambda v \in S$ and $\mu \lambda v=v$.
b) S is called an additive spine of the R-module V if V is additively generated by \widetilde{S}, $V=\sum^{\infty} \widetilde{S}$
Thus the additive spines on ${ }_{R} R$, i.e., of R considered as left R-module, are the same objects as the additive spines on R as defined in $\S 2$.

Example 8.2. If S is a set of generators of the R-module V and M is an additive spine of R, then we know by Theorem 7.8 that $M S$ is an additive spine of V.

Theorem 7.8 generalizes as follows:
Theorem 8.3. Assume that S is an additive spine of an R-module V. Then every $S A$ submodule W of V is generated by $W \cap S$, and moreover $W \cap S$ is an additive spine of W.

Proof. a) We first verify that V itself is generated by S. Since V is additively generated by \widetilde{S}, for given nonzero $v \in V$ we have

$$
\begin{equation*}
v=\sum_{i=1}^{n} v_{i} \tag{A}
\end{equation*}
$$

with $n \in \mathbb{N}, v_{i} \in \widetilde{S}$. There exist $\lambda_{i}, \mu_{i} \in R$ such that

$$
\begin{gather*}
s_{i}:=\lambda_{i} v_{i} \in S \tag{B}\\
v_{i}=\mu_{i} s_{i} \tag{C}
\end{gather*}
$$

and so by (A)

$$
v=\sum_{i=1}^{n} \mu_{i} s_{i}
$$

and we are done.
b) If now W is an SA-submodule of V, and the above element v lies in W, then in (A) all summands v_{i} are in W, and so the s_{i} from (7) are in $W \cap S$. We conclude from (B) and (C) that all v_{i} are in the halo $(W \cap S)^{\sim}$ of $W \cap S$ in W, and we infer from (A) that W is additively generated by $(W \cap S)^{\sim}$, i.e., $W \cap S$ is an additive spine of W. As proved in a) the set $W \cap S$ generates the R-module W.

We write down a chain of propositions which turn out to be useful in working with halos and additive spines. For clarity we sometimes denote the halo of a set S in an V more elaborately by $\operatorname{hal}_{V}(S)$ instead of \widetilde{S}.

Proposition 8.4. If S is a subset of an R-module V and W a submodule of V, then

$$
W \cap \operatorname{hal}_{V}(S)=\operatorname{hal}_{W}(W \cap S)=\operatorname{hal}_{V}(W \cap S)
$$

Proof. Let $v \in \operatorname{hal}_{V}(S)$ be given. We choose $\lambda, \mu \in R$ with $\lambda v=s \in S$ and $\mu s=v$. If now $v \in W$ then $\lambda v=s \in W \cap S$, and so $v \in \operatorname{hal}_{W}(W \cap S)$. This proves that

$$
\begin{equation*}
W \cap \operatorname{hal}_{V}(S) \subset \operatorname{hal}_{W}(W \cap S) \tag{A}
\end{equation*}
$$

Trivially

$$
\begin{equation*}
\operatorname{hal}_{W}(W \cap S) \subset \operatorname{hal}_{V}(W \cap S) \tag{B}
\end{equation*}
$$

If $v \in \operatorname{hal}_{V}(W \cap S)$, then there exist $\lambda, \mu \in R$ with $\lambda v=s \in W \cap S$ and $\mu s=v$. It follows that $v \in W \cap \operatorname{hal}_{V}(S)$. This proves

$$
\begin{equation*}
\operatorname{hal}_{V}(W \cap S) \subset W \cap \operatorname{hal}_{V}(S) \tag{C}
\end{equation*}
$$

(A) -(C) together imply the assertion of the proposition.

In case $S \subset W$ the proposition reads as follows:
Corollary 8.5. Let $S \subset V$. Then the halo of S in any submodule $W \supset S$ of V coincides with the halo of S in V.

Thus in practice the notation $\operatorname{hal}_{V}(S)$ instead of \widetilde{S} is rarely needed.
Proposition 8.6. Let $\left(V_{i} \mid i \in I\right)$ be a family of submodules of the R-module V and assume that for every $i \in I$ there is given a set $S_{i} \subset V_{i}$.
a) Then

$$
\bigcup_{i \in I} \operatorname{hal}_{V_{i}}\left(S_{i}\right)=\operatorname{hal}_{V}\left(\bigcup_{i \in I} S_{i}\right)
$$

b) If $\sum_{i \in I} V_{i}=V$ and each S_{i} is an additive spine of V_{i}, then $\bigcup_{i \in I} S_{i}$ is an additive spine of V.

Proof. Let $S:=\bigcup_{i \in I} S_{i}$.
a): We have hal $(S)=\bigcup_{i \in I} \operatorname{hal}_{V}\left(S_{i}\right)$ in complete analogy to Remark 7.3;iii. Furthermore $\operatorname{hal}_{V}\left(S_{i}\right)=\operatorname{hal}_{V_{i}}\left(S_{i}\right)$ by Corollary 8.5,
b): Let $\widetilde{S}_{i}:=\operatorname{hal}_{V_{i}}\left(S_{i}\right)$. Then $\cup \widetilde{S}_{i}=\widetilde{S}, \sum^{\infty} \widetilde{S}_{i}=V_{i}$, and so

$$
\sum^{\infty} \widetilde{S}=\sum_{i \in I}\left(\sum^{\infty} \widetilde{S}_{i}\right)=\sum_{i \in I} V_{i}=V
$$

We now have a good hold on all additive spines of a free R-module as follows:
Proposition 8.7. Assume that V is a free R-module with base ($v_{i} \mid i \in I$). Then every additive spine S of V has the shape

$$
S=\bigcup_{i \in I} M_{i} v_{i}
$$

with every M_{i} an additive spine of R, as defined in $\$ 7$.

Proof. We have $V=\bigoplus_{i \in I} V_{i}$ with $V_{i}=R v_{i} \cong{ }_{R} R$. The claim follows from Proposition 8.6,
Proposition 8.8 (Functoriality of halos and additive spines). Let $\varphi: V \rightarrow V^{\prime}$ be an R-linear map between R-modules.
a) If S is a subset of V then

$$
\varphi(\widetilde{S}) \subset \varphi(S)^{\sim}
$$

b) If S is an additive spine of V, then the R-module $\varphi(V)$ is additively generated by $\varphi(\widetilde{S})$, and so $\varphi(S)$ is an additive spine of $\varphi(V)$.
Proof. a): Let $x \in \widetilde{S}$. We have $\lambda, \mu \in R$ with $\lambda x=s \in S, \mu s=x$. It follows that $\lambda \varphi(x)=\varphi(s), \mu \varphi(s)=\varphi(x)$, whence $\varphi(x) \in \varphi(S)^{\sim}$.
b): By Corollary 8.5 we may replace V by $\varphi(V)$, and so assume that φ is surjective. We have $\sum^{\infty} \widetilde{S}=V$. Applying φ we obtain

$$
\sum^{\infty} \varphi(\widetilde{S})=\varphi(V)
$$

It follows by a) that $\sum^{\infty} \varphi(S)^{\sim}=\varphi(V)$.
Corollary 8.9. Assume that R, T are semirings and V is an (R, T)-bimodule, i.e., V is a left R-module, a right T-module, and

$$
\forall \lambda \in R, \mu \in T, v \in V:(\lambda v) \mu=\lambda(v \mu) .
$$

Let S be a subset of V. As before let \widetilde{S} denote the halo of S in ${ }_{R} V$, ($=V$ as a left R-module). Then, for any $t \in T$

$$
\widetilde{S} t \subset(S t)^{\sim}
$$

If S is an additive spine of V then $\widetilde{S} t$ generates the left R-module $V t$ additively, and so $S t$ is an additive spine of $V t$.

Proof. Apply Proposition 8.8 to the endomorphism $v \mapsto v t$ of ${ }_{R} V$.
Corollary 8.10. If again V is an (R, T)-bimodule and t is a unit of T, then $\widetilde{S} t=(S t)^{\sim}$, and S is an additive spine of V iff $S t$ is an additive spine of V.
Proof. Let $u:=t^{-1}$. Then by Corollary $8.9(\widetilde{S} t) u \subset(S t)^{\sim} u \subset(S t u)^{\sim}=\widetilde{S}$. Multiplying by t, we obtain $\widetilde{S} t \subset(S t)^{\sim} \subset \widetilde{S} t$, whence $\widetilde{S} t=(S t)^{\sim}$, and then

$$
\sum^{\infty}(S t)^{\sim}=\left(\sum^{\infty} \widetilde{S}\right) t
$$

Example 8.11. R is an (R, R)-bimodule in the obvious way. Thus, if M is an additive spine of R (as defined already in \$耳7), and if u is a unit of R, then $M u$ is again an additive spine of R.

Example 8.12. Assume that C is a semiring which is a homomorphic image of \mathbb{N}_{0}, and $R:=M_{n}(C)$. We have seen in Example 2.12 that $\left\{e_{11}, \ldots, e_{n n}\right\}$ is an additive spine of R. Let $\sigma \in \Gamma_{n}$. Then $u:=\sum_{i=1}^{n} e_{i, \sigma_{(i)}}$ is a unit of R, namely u is the permutation matrix of σ^{-1}. We have $e_{i i} u=e_{i, \sigma(i)}$, and conclude that $\left\{e_{1, \sigma(1)}, \ldots, e_{n, \sigma(n)}\right\}$ is an additive spine of $M_{n}(C)$.
We can generalize Proposition 7.12 as follows:

Proposition 8.13. Assume that R_{1}, R_{2} are subsemirings of a semiring R with $R=\sum^{\infty} R_{1} R_{2}$, and that V_{1}, V_{2} are left modules over R_{1} and R_{2} respectively. Assume furthermore that there is given a composition $V_{1} \times V_{2} \bullet V$ such that

$$
\left(\lambda_{1} \lambda_{2}\right)\left(v_{1} \bullet v_{2}\right)=\left(\lambda_{1} v_{1}\right) \bullet\left(\lambda_{2} v_{2}\right)
$$

for any $\lambda_{i} \in R, v_{i} \in V_{i}(i=1,2)$. Assume finally that $V=\sum^{\infty} V_{1} \bullet V_{2}$. Then, given subsets $S_{i} \subset V_{i}$ with halos \widetilde{S}_{i} in the R_{i}-module $V_{i}(i=1,2)$, the following holds.
a) $\widetilde{S}_{1} \bullet \widetilde{S}_{2}$ is contained in the halo $\left(S_{1} \bullet S_{2}\right)^{\sim}$ of $S_{1} \bullet S_{2}$ in V.
b) If S_{i} is an additive spine of $V_{i}(i=1,2)$ then

$$
V=\sum^{\infty} \widetilde{S}_{1} \bullet \widetilde{S}_{2}
$$

and $S_{1} \bullet S_{2}$ is an additive spine of V.
Proof. Let $v_{i} \in \widetilde{S}_{i}(i=1,2)$. We have $\lambda_{i}, \mu_{i} \in R_{i}$ with $\lambda_{i} v_{i}=s_{i} \in S_{i}, \mu_{i} s_{i}=v_{i}$. Now

$$
\left(\lambda_{1} \lambda_{2}\right)\left(v_{1} \bullet v_{2}\right)=\left(\lambda_{1} v_{1}\right) \bullet\left(\lambda_{2} v_{2}\right)=s_{1} \bullet s_{2}
$$

and $\left(\mu_{1} \mu_{2}\right)\left(s_{1} \bullet s_{2}\right)=\left(\mu_{1} s_{1}\right) \bullet\left(\mu_{2} s_{2}\right)=v_{1} \bullet v_{2}$. This proves that $\widetilde{S}_{1} \bullet \widetilde{S}_{2} \subset\left(S_{1} \bullet S_{2}\right)^{\sim}$. If now $\sum^{\infty} \widetilde{S}_{i}=V_{i}(i=1,2)$, then

$$
\sum^{\infty}\left(\widetilde{S}_{1} \bullet \widetilde{S}_{2}\right) \supset\left(\sum^{\infty} \widetilde{S}_{1}\right) \bullet\left(\sum^{\infty} \widetilde{S}_{2}\right)=V_{1} \bullet V_{2}
$$

and so $\sum^{\infty}\left(\widetilde{S}_{1} \bullet \widetilde{S}_{2}\right) \supset \sum^{\infty} V_{1} \bullet V_{2}=V$, whence $\sum^{\infty} \widetilde{S}_{1} \bullet \widetilde{S}_{2}=V$. A fortiori $\sum^{\infty}\left(S_{1} \bullet S_{2}\right)^{\sim}=V$.
Note that Proposition 7.12 is indeed a special case of this proposition: Given an R module V, take $R_{1}=R_{2}=R, V_{1}=R, V_{2}=V$ and the scalar product $R \times V \rightarrow V$.
9. The posets $\mathrm{SA}(V), \Sigma \mathrm{SA}(V)$ and $\Sigma_{f} \mathrm{SA}_{f}$ IN Good cases

Assume now that R has a finite additive spine M consisting of $m:=|M|$ elements. We have seen in $\S 7$ that, when S is a set of generators of V, then every $W \in \mathrm{SA}(V)$ is generated by the set $W \cap(M S)$. Thus, if $s:=|S|$ is finite, we see that the lattice $\mathrm{SA}(V)$ is finite, consisting of at most $2^{m|S|}$ elements. More generally we have the following fact.
Theorem 9.1. Assume that V_{0} is a submodule of an R-module V and S is a subset of V, such that V is generated over V_{0} by S, i.e.,

$$
\begin{equation*}
V=V_{0}+\sum^{\infty} R S \tag{9.1}
\end{equation*}
$$

Let $W_{0} \in \mathrm{SA}(V)$ be given with $W_{0} \subset V_{0}$, and consider the set

$$
\begin{equation*}
\mathrm{SA}\left(V ; W_{0}, V_{0}\right)=\left\{W \in \mathrm{SA}(V) \mid W \cap V_{0}=W_{0}\right\} \tag{9.2}
\end{equation*}
$$

Then if $s:=|S|$ is finite, this set $\mathrm{SA}\left(V ; W_{0}, V_{0}\right)$ consists of at most $2^{\text {ms }}$ elements. Furthermore, any chain $W_{0} \varsubsetneqq W_{1} \varsubsetneqq \cdots \varsubsetneqq W_{r}$ in $\mathrm{SA}\left(V ; W_{0}, V_{0}\right)$ has length $r \leq m s$.
Proof. Let U denote the submodule of V generated by S. We have $V=V_{0}+U$. If $W \in$ $\mathrm{SA}\left(V ; W_{0}, V_{0}\right)$ then by (1.1)

$$
\begin{equation*}
W=W \cap V_{0}+W \cap U=W_{0}+W \cap U \tag{9.3}
\end{equation*}
$$

and, of course, $W \cap U \in \mathrm{SA}(U)$. Since $|\mathrm{SA}(U)| \leq 2^{m s}$, as stated above, we infer that $\left|\mathrm{SA}\left(V ; W_{0}, V_{0}\right)\right| \leq 2^{m s}$. Also, if $W_{0} \varsubsetneqq W_{1} \varsubsetneqq \cdots \varsubsetneqq W_{r}$ is a chain in $\operatorname{SA}\left(V ; W_{0}, V_{0}\right)$, we conclude from (9.3) for $U_{i}:=W_{i} \cap U$ that

$$
U_{0} \varsubsetneqq U_{1} \varsubsetneqq \cdots \varsubsetneqq U_{r} .
$$

Every U_{i} is generated by the set $U_{i} \cap(M S)$ and so

$$
U_{0} \cap(M S) \varsubsetneqq U_{1} \cap(M S) \varsubsetneqq \cdots \varsubsetneqq U_{r} \cap(M S) .
$$

This implies that $r \leq|M S|=m s$.
We return to an arbitrary semiring R.
Theorem 9.2. Assume that T is an additive spine of the R-module V (cf. Def. 8.1).
a) Then any $U \in \Sigma \mathrm{SA}(V)$ is generated by the set $U \cap T$.
b) If T is finite, $|T|=t$, then $|\Sigma \mathrm{SA}(V)| \leq 2^{t}$, and any chain

$$
U_{0} \varsubsetneqq U_{1} \varsubsetneqq \cdots \varsubsetneqq U_{r}
$$

in $\Sigma \mathrm{SA}(V)$ has length $r \leq t$.
Proof. a): Write $U=\sum_{i \in I} W_{i}$ with $W_{i} \in \mathrm{SA}(V)$. We know by Theorem 8.3 that every W_{i} is generated by $W_{i} \cap S$. Thus U is generated by the set

$$
\bigcup_{i \in I}\left(W_{i} \cap S\right)=\left(\bigcup_{i \in I} W_{i}\right) \cap S
$$

A fortiori U is generated by $U \cap S$.
b): Every $U \in \Sigma \mathrm{SA}(V)$ is generated by the set $U \cap T \subset T$. We have at most 2^{t} possibilities for this set, and so $|\Sigma \mathrm{SA}(V)| \leq 2^{t}$. Furthermore, if $U_{0} \varsubsetneqq \cdots \varsubsetneqq U_{r}$ is a chain in $\Sigma \mathrm{SA}(V)$, then

$$
U_{0} \cap T \varsubsetneqq U_{1} \cap T \varsubsetneqq \cdots \varsubsetneqq U_{r} \cap T,
$$

since each U_{i} generated by $U_{i} \cap T$, and so $r \leq t$.
By a variation of our previous arguments we obtain
Theorem 9.3. Assume that R has a finite additive spine M, furthermore that $U \in \Sigma_{f} \mathrm{SA}_{f}(V)$. Let S be a finite set of generators of U. Then every $W \in \mathrm{SA}_{f}(U)$ is generated by the finite set $W \cap(M S)$ and every chain

$$
W \supsetneqq W_{1} \supsetneqq W_{2} \supsetneqq \ldots \supsetneqq W_{r}
$$

in $\mathrm{SA}(U)$, hence in $\mathrm{SA}_{f}(U)$, has length $r \leq|M| \cdot|S|$. A fortiori this holds if W and all W_{i} are in $\mathrm{SA}_{f}(V)$.

Proof. Every $W \in \mathrm{SA}_{f}(U)$ is generated by the finite set $W \cap(M S)$, cf. Theorem 7.8, Furthermore by the same theorem every W_{i} is generated by the subset $W_{i} \cap(M S)$ of $W \cap(M S)$. It follows that

$$
W \cap(M S) \supsetneqq W_{1} \cap(M S) \supsetneqq \ldots \supsetneqq W_{r} \cap(M S)
$$

and so $r \leq|W \cap(M S)| \leq|M| \cdot|S|$. It is obvious that every SA-submodule of V contained in U is SA in U.

Example 9.4. We read off from Theorem 9.3 that, if R has a finite additive spine, then every module $U \in \Sigma_{f} \mathrm{SA}_{f}(V)$ is SAF-accessible.

Our final result in this section refers to modules with additive spines which are not necessarily finite.

Theorem 9.5. Assume that $T \subset V$ is an additive spine of the R-module V, and $U \in \Sigma \mathrm{SA}(V)$.
a) Then U is generated by the set $U \cap T$.
b) If U is an SA_{f}-sum in V, and $\left(W_{i} \mid i \in I\right)$ is a family of finitely generated SA_{f} submodules of V with $U=\sum_{i \in I} W_{i}$, then every W_{i} is generated by a finite subset T_{i} of $W_{i} \cap T$, and so U is generated by the subset $\bigcup_{i \in I} T_{i}=T^{\prime}$ of T. This subset T^{\prime} is an additive spine of U.
c) If $U \in \Sigma_{f} \mathrm{SA}_{f}(V)$ then U is generated by a finite subset of $U \cap T$, and this is an additive spine of U.

Proof. We choose a family $\left(W_{i} \mid i \in I\right)$ in $\operatorname{SA}_{f}(V)$ with $U=\sum_{i \in I} W_{i}$.
a): Done before (Theorem 9.2).
b): We assume now that all W_{i} are finitely generated. Every W_{i} is generated by $W_{i} \cap T$ (Theorem 8.3). It follows that W_{i} is generated by a finite subset T_{i} of $W_{i} \cap T$. Indeed, given generators s_{1}, \ldots, s_{r} of W_{i} for i fixed, write every s_{j} as a linear combination of a finite subset $T_{i j}$ of $W_{i} \cap T$. Then $T_{i}:=\bigcup_{j=1}^{r} T_{i j}$ does it. It follows by Theorem 8.3 that T_{i} is an additive spine of W_{i}. It now is clear that $T^{\prime}:=\bigcup_{i \in I} T_{i}$ generates $U=\sum_{i \in I} W_{i}$, and it follows by Proposition 8.6 that T^{\prime} is an additive spine of U.
c): Now evident, since the index set I can be assumed to be finite, and so $T^{\prime}=\bigcup_{i \in I} T_{i}$ is a finite additive spine of U.

References

[1] M. Dubey. Some results on semimodules analogous to module theory, Doctoral Dissertation, University of Delhi, 2008.
[2] J. Golan. Semirings and their Applications, Springer-Science + Business, Dordrecht, 1999. (Originally published by Kluwer Acad. Publ., 1999.)
[3] R. Gordon and J.C. Robson. Krull Dimension, Memoirs of the American Mathematical Society, 133, 1973.
[4] Z. Izhakian, M. Knebusch, and L. Rowen. Decompositions of modules lacking zero sums. Israel J. Math. Preprint at arXiv:1511.04041, 2015.
[5] B. Lemonnier, Deviation de Krull et codeviation, Quelques applications en théorie des modules, Doctoral Dissertation, 1972.
[6] C. Nastasescu and F. Van Oystaeyen, Dimensions of Ring Theory, Reidel, 1987
Institute of Mathematics, University of Aberdeen, AB24 3UE, Aberdeen, UK.
E-mail address: zzur@abdn.ac.uk
Department of Mathematics, NWF-I Mathematik, Universität Regensburg 93040 Regensburg, Germany

E-mail address: manfred.knebusch@mathematik.uni-regensburg.de
Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
E-mail address: rowen@math.biu.ac.il

[^0]: Date: May 30, 2017.
 2010 Mathematics Subject Classification. Primary 14T05, 16D70, 16Y60 ; Secondary 06F05, 06F25, $13 \mathrm{C} 10,14 \mathrm{~N} 05$.

 Key words and phrases. Semiring, lacking zero sums, direct sum decomposition, free (semi)module, projective (semi)module, indecomposable, semidirect complement, upper bound monoid, weak complement.

[^1]: ${ }^{1}$ In contrast to direct decompositions, a formal definition of such decompositions, named "SAdecompositions", will be given only later (Definition 2.8).

[^2]: ${ }^{2}$ It may seem appropriate to reserve the letter " e " for a straight generalization of "essential extensions" to modules over semirings, as defined in [2, p.95] (there called "essential module-monomorphisms"), and to label SA-equivalences and SA-extensions by "sae" instead of " e ". But in the present paper the true essential extensions do not show up, and so we feel free to use the simpler label " e ".

[^3]: ${ }^{3}$ These notions can be viewed in terms of the general theory from [6]. By [6, 3.2.4] any pair (M, N) with SA-Kdim has SA-critical submodules (cf. Definition 3.5). By [6, 3.2.6] every SA-critical module is SA-uniform.

