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SUMMAND ABSORBING SUBMODULES

OF A MODULE OVER A SEMIRING

ZUR IZHAKIAN, MANFRED KNEBUSCH, AND LOUIS ROWEN

Abstract. An R-module V over a semiring R lacks zero sums (LZS) if x + y = 0 ⇒
x = y = 0. More generally, a submodule W of V is summand absorbing in V if ∀x, y ∈
V : x + y ∈ W ⇒ x ∈ W, y ∈ W. These arise in tropical algebra and modules over
idempotent semirings. We explore the lattice of summand absorbing submodules of a given
LZS module, especially those that are finitely generated, in terms of the lattice-theoretic
Krull dimension, and describe their explicit generation.
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1. Introduction

Throughout this paper, R is a semiring [2], and V is a (left) module (sometimes called
“semimodule”) over R; i.e., (V,+) is a semigroup satisfying the familiar module axioms
as well as r0V = 0Rx = 0V for all r ∈ R, x ∈ V. The zero submodule {0V } is usually
written as 0. We denote the set of all submodules of V by Mod(V ). Since we cannot take
quotient modules V/W over semirings, we also write Mod(V ;W ) for the submodules of V
containing W .
An R-module V over a semiring R lacks zero sums (where the term “zerosumfree” is

used in [2]), abbreviated LZS, if

∀ x, y ∈ V : x+ y = 0 ⇒ x = y = 0. (LZS)

In this paper we continue the theory of LZS modules from [4], which applies immediately
to tropical algebra and modules over idempotent semirings. Our results apply in particular
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to additive semigroups (with neutral element), which can be viewed as modules over the
semiring N0 of natural numbers including zero.
The condition (LZS) follows at once from the condition, called upper bound (ub), that

a+ b+ c = a implies a+ b = a. (We take a = 0.) In [4, §6] the obstruction in an R-module V
to the ub condition was studied in terms of Green’s partial pre-order, a binary relation �
(more precisely denoted �V ) given by

x � y ⇔ ∃ z ∈ V : x+ z = y.

This is a pre-order (also called a “quasi-ordering”) on V ; in other words, � is reflexive (x � x)
and transitive (x � y, y � z ⇒ x � z), but not necessarily antisymmetric. (Green’s partial
preorder is generated by the relations 0V � z, since x+z = y implies x = x+0V � x+z = y.)
To get a better understanding of this property, we introduce an equivalence relation ≡

on V as follows:
x ≡ y ⇔ x � y, y � x.

As observed after [4, Definition 6.1], ≡ is a congruence, implying V := V/ ≡ is again an
R-module in the obvious way, with the induced operations x̄ + ȳ = x+ y and rx̄ = rx,
where x̄ denotes the equivalence class of x. We have the well-defined partial ordering ≤ on
the R-module V induced by � :

x̄ ≤ ȳ ⇔ x � y

for any x, y ∈ V , which is compatible with addition and scalar multiplication.

Proposition 1.1 ([4, Proposition 6.2]).

(i) The monoid V is upper bound.

(ii) V is upper bound if and only if the congruence ≡ is trivial.

For x � y we want to examine those z ∈ V such that x � z � y. For example, if α+β = 1,
then x � αx+ βy � y, since x = αx+ βx � αx+ βy and αx+ βy � αy + βy = y.

Definition 1.2. A subset S of V is convex (in V ) if for any x, y, z ∈ V :

x ∈ S, y ∈ S, x � z � y ⇒ z ∈ S.

It is easily seen that a set S ⊂ V is convex in V iff S partitions into full equivalence classes
(of ≡), and the image S in the partially ordered set V is convex.

1.1. Summand absorbing submodules.
We turn to the main notion of this paper, examining the LZS condition in terms of a

related property which we call SA.

Definition 1.3. A submodule W of V is summand absorbing (abbreviated SA) in V if

∀ x, y ∈ V : x+ y ∈ W ⇒ x ∈ W, y ∈ W ; (SA)

we then say that W is an SA-submodule V . A submodule U of V is a ΣSA-submodule

of V (or: an SA-sum in V ) if U =
∑
i∈I

Wi for some family (Wi | i ∈ I) of SA-submodules.

Remarks 1.4.

a) The R-module V is LZS iff 0 is an SA-submodule of V .

b) V is ub iff the semigroup Vy := {x ∈ V : x+y = y} is SA (as an additive semigroup)
for each y ∈ V.

We also recall the notion of a weak complement of a submodule W of V .
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Definition 1.5 ([4, Definition 1.2]). A submodule T of V is a weak complement of W
(in V ), denoted V = W ⊕w T , if V = W + T and for every w ∈ W \ {0} the intersection
(w + T ) ∩ T is empty.

Thus
V = W ⊕ T ⇒ V = W ⊕w T,

although V = W ⊕w T does not necessarily imply that V = T ⊕w W .

Lemma 1.6 ([4, Lemma 2.2]). Suppose that W is a submodule of an LZS module V . Then T
is a weak complement of W , if and only if T is SA with T ∩W = 0.

Thus the SA property is a natural continuation of the research in [4]. The following result,
proved in [4, Lemma 2.3], leads to a theory of decompositions in tropical algebra and related
structures, much stronger than the classical theory, since one gets unique decompositions.

Lemma 1.7. Suppose V has an SA-submodule T . Then any decomposition of V descends
to a decomposition of T , in the sense that if V = Y + Z, then T = (T ∩ Y ) + (T ∩ Z).

Accordingly, we are led to study SA-submodules in their own right, particularly when they
are finitely generated.
SA(V ) denotes the poset consisting of all SA-submodules of V , partially ordered by inclu-

sion. We also write SA(V ;W ) for the SA-submodules of V containing W . SAf denotes the
finitely generated SA-submodules. The set of all SA-sum submodules is denoted as ΣSA(V ),
regarded again as a poset by the inclusion relation (containing SA(V ) as a sub-poset). Σ SAf

is the set of all sums of finitely generated SA-submodules.

Proposition 1.8 ([4, Proposition 5.7]). A submodule W of V is in SA(V ) iff W is a union
of equivalence classes and W is SA in V .

In other words, the elements of SA(V ) are just the convex submodules of V under the
relation �. We denote the convex hull convV (W ) of an R-submodule W of V more concisely

as Ŵ .
Any family (Wi | i ∈ I) in the poset SA(V ) has the infimum

⋂
i∈I

Wi and the supremum
(∑
i∈I

Wi

)∧
in SA(V ), and so SA(V ) is a complete lattice (in contrast to ΣSA(V ), cf. Re-

mark 2.10) below. Furthermore, we shall show in Proposition 3.1 that SA(V ) is a modular
lattice. Accordingly many tools of classical module theory become available.
The first part of the paper (§2–§3) covers the general theory of SA-submodules. In §2

we continue the theory of [4], and introduce decompositions of SA-modules, called “SA-
decompositions,” proving the following results:

Theorem 2.2. Assume that W and T are submodules of V with W + T = V , W ∩ T = 0,
and furthermore, that T is an SA-submodule of V . Then V = W ⊕w T .

Theorem 2.13. Any R-module V has at most one SA-decomposition (Ti | i ∈ I), where
all Ti are SA-indecomposable. This is the finest SA-decomposition of V .

Theorem 2.16. Assume that W and T are submodules of V with T ∈ SA(V ), W + T = V ,
W ∩ T = 0, (whence V = W ⊕w T by Theorem 2.2). Let (vλ | 1 ≤ λ ≤ d) be a system of
generators of V . Write vλ = wλ+ tλ with wλ ∈ W, tλ ∈ T . Then (tλ | 1 ≤ λ ≤ d) is a system
of generators of T .

Theorem 2.18. The SA-decompositions of R correspond uniquely to the complete orthogonal
systems of idempotents of R.
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In §3 we develop a structure theory of SA-submodules along the classical lines of the socle
and various analogs of dimension theory, including SA-Kdim, which is Krull dimension in the
sense of [3] (or, more precisely, [5]), but based on SA-submodules. The theory is made more
explicit in §3.2 by use of SA-uniform submodules and the SA-uniformity dimension
(Definition 3.28), described in Theorem 3.30.
In the second of the paper (§4–§6) we exhibit a reasonably broad class of R-modules V ,

over an arbitrary semiring R, called finitely SA-accessible, for which we can obtain some
stronger results. We say that V is SAf-hereditary if submodules of SAf -submodules are
SAf -submodules. Those SAf -hereditary modules with SAf -Kdim, called SAF-accessible,
are examined in §4, and put to use in §5 and §6, where the height of a module is defined in
terms of the Krull dimension, and decisive results are obtained for modules in terms of their
height.

In the third part of the paper (§7–§9) we study generation of SA-submodules. §7 brings in
a somewhat technical condition, called spines on R, built from halos, which permit rather
efficient generation of modules, cf. Theorem 7.10, and these are presented over V in §8. One
main result:

Theorem 8.3. Assume that S is an additive spine of an R-module V . Then every SA-
submodule W of V is generated by W ∩ S, and moreover W ∩ S is an additive spine of W .

For rings, this specializes to:

Theorem 7.8. Assume that S is a set of generators of a (left) R-module V , and M is an
additive spine of R. Then any SA-submodule W of V is generated by the set W ∩ (MS).

An application to matrices is given in Theorem 7.14, and more generally to monoid semirings
in Theorem 7.17.
In §9 we obtain rather satisfactory results about the SA-submodules and the ΣSA-

submodules of a finitely generated module V over a semiring R which has a finite additive
spine. The main reason is that in this case all SA-submodules of V are finitely generated.

2. Preliminary results

We make a fresh start, reworking easy facts from [4, §4] in a slightly different way which
fits better into the present chain of arguments than a mere citation of parts of [4] would do.
Our goal is to compare different “weak” decompositions1 of V into SA-submodules.

2.1. Three basic principles.

For basic facts on SA-submodules we refer to [4], now being content to recall three general
principles from that paper.

A) If f : V → V ′ is an R-linear map between R-modules and W ′ is an SA-submodule
of V ′ then (clearly) f−1(W ′) is SA in V .

Using this principle we immediately see that if V is LZS and W is a direct summand
of V , i.e., V = W ⊕ T , then W is in SA(V ), since W is the kernel of a projection
p : V → V with p(V ) = T . (But usually an R-module V lacking zero sums has
many more SA-submodules than direct summands.) We note in passing that for this
conclusion it suffices to assume that T (instead of V ) is LZS.

1In contrast to direct decompositions, a formal definition of such decompositions, named “SA-
decompositions”, will be given only later (Definition 2.8).
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B) If (Wi | i ∈ I) is a family of SA-submodules of V then (evidently)
⋂
i∈I

Wi is SA in V . If

the family (Wi) is upward directed, i.e., for i, j ∈ I there exists k ∈ I with Wi ⊂ Wk,
Wj ⊂ Wk, then also

⋃
i∈I

Wi is in SA(V ).

C) A subset S containing 0V is convex in V if and only if S is SA [4, Lemma 6.6].

Our paper [4] contains various facts about weak complements, but more can be done. Our
results below are rooted in analyzing the situation where both V = W⊕wT and V = T⊕wW
hold, cf. Definition 1.5.

Theorem 2.1 ([4, Lemmas 2.1 and 2.2]). Assume that W is a submodule of V which is LZS,
and that T is a weak complement of W in V . Then the module T is in SA(V ). If moreover T
also is LZS, then V is LZS.

Proof. The first assertion is by Lemma 1.6. Assume that v1, v2 ∈ V and v1 + v2 = t ∈ T .
Then vi = wi + ti with wi ∈ W , ti ∈ T (i = 1, 2). By adding we obtain

(w1 + w2) + (t1 + t2) = t.

By Definition 1.5 this implies w1 + w2 = 0 and t1 + t2 = t. Since W is LZS, it follows that
w1 = w2 = 0, and so vi = ti ∈ T . Thus T is in SA(V ).
If T is LZS and t = 0, i.e. v1+ v2 = 0, we obtain from t1+ t2 = 0 that t1 = t2 = 0, whence

v1 = v2 = 0. So V is LZS. �

Theorem 2.2. Assume that W and T are submodules of V with W + T = V , W ∩ T = 0,
and furthermore, that T is an SA-submodule of V . Then V = W ⊕w T .

Proof. Let w ∈ W \ {0}, t ∈ T , and suppose that w + t ∈ T . Then w ∈ T since T is SA
in V . We conclude that w ∈ T ∩W = {0}, a contradiction. Thus (w + T ) ∩ T = ∅. �

Lemma 2.3. Assume that W,T, U are submodules of V , such that V = W ⊕w T and V =
W + U . Then T ⊂ U .

Proof. The module T is in SA(V ) (Theorem 2.1). Thus V = W + U implies that

T = (T ∩W ) + (T ∩ U).

But T ∩W = {0}, whence T = T ∩ U , i.e., T ⊂ U . �

Theorem 2.4 (Uniqueness of weak complements, cf. [4, Corollary 2.5]). Assume that V =
W ⊕w T and V = W ⊕w U . Then T = U .

Proof. By Lemma 2.3 we have T ⊂ U and U ⊂ T . �

Theorem 2.5. Assume that W and T are submodules of V with W +T = V and W ∩T = 0,
and furthermore that both W and T are LZS. Then the following conditions are equivalent.

(1) W,T are SA-submodules of V .

(2) V = W ⊕w T = T ⊕w W .

If (1), (2) hold, then V is LZS.

Proof. (1) ⇒ (2) is clear by Theorem 2.2, and (2) ⇒ (1) is clear by Theorem 2.1. If (1), (2)
hold, then it follows by the last sentence in Theorem 2.1 that V is LZS. �

The following lemma will be useful.

Lemma 2.6. Assume that W,T, Y, Z are submodules of V with

V = W ⊕w T = Y + Z.

Assume also that W is LZS.
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a) Then T = (T ∩ Y ) + (T ∩ Z).

b) If moreover V = Y ⊕w Z, then T = (T ∩ Y )⊕w (T ∩ Z).

Proof. a): This is clear since T is in SA(V ) (Theorem 2.1).

b): If y ∈ T ∩ Y and y 6= 0 then (y + Z) ∩ Z = ∅, and so

[y + (T ∩ Z)] ∩ T ∩ Z = ∅. �

2.2. SA-decompositions.
We assume throughout that the R-module V is LZS (and so all submodules of V also

are LZS), a natural hypothesis in view of the preceding Theorems 2.1 and 2.5. Given two
decompositions

V = W1 ⊕w W ′
1 = W2 ⊕w W ′

2, (2.1)

we know by Theorems 2.1 and 2.5 that all four submodules W1, W
′
1, W2, W

′
2 are in SA(V ),

and that
V = W ′

1 ⊕w W1 = W ′
2 ⊕w W2.

By Lemma 2.6 we have decompositions

W1 = W1 ∩W2 ⊕w W1 ∩W ′
2,

W ′
1 = W ′

1 ∩W2 ⊕w W ′
1 ∩W ′

2,
(2.2)

and analogous decompositions of W2,W
′
2. By adding we obtain

V = [(W1 ∩W2)⊕w (W1 ∩W ′
2)]⊕w [(W ′

1 ∩W2)⊕w (W ′
1 ∩W ′

2)]. (2.3)

Since W ′
1 ∩W ′

2 is in SA(V ) we conclude by Theorem 2.2 that

V = [(W1 ∩W2) + (W1 ∩W ′
2) + (W ′

1 ∩W2)]⊕w W ′
1 ∩W ′

2. (2.4)

Furthermore, by adding the equalities

W1 = W1 ∩W2 + W1 ∩W ′
2,

W2 = W1 ∩W2 + W ′
1 ∩W2,

we obtain
W1 +W2 = W1 ∩W2 + W1 ∩W ′

2 + W ′
1 ∩W2. (2.5)

Comparing (2.4) and (2.5) we learn the following.

Proposition 2.7. The present situation (2.1) implies that

V = (W1 +W2)⊕w (W ′
1 ∩W ′

2). (2.6)

But we do not know whether W1+W2 is in SA(V ) or not. If W1,W2 are direct summands
of V then we know from [4, Theorem 2.9] that W1 +W2 is a direct summand of V , and so
W1+W2 is an SA-submodule of V . This difficulty prompts the following somewhat unusual
definition of “SA-decompositions” and “SA-summands.”

Definition 2.8.

a) We call a family (Ti | i ∈ I) in SA(V ) orthogonal, if for any two indices i 6= j, the
intersection Ti ∩ Tj equals 0.

b) An SA-decomposition of V is an orthogonal family (Ti | i ∈ I) in SA(V ) with all
Ti 6= 0, which spans V , i.e., V =

∑
i∈I

Ti.

c) We call a submodule T of V an SA-summand of V if T is a member of an SA-
decomposition (Ti | i ∈ I) of V , i.e., T = Ti for some i ∈ I.
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d) We say that V is SA-indecomposable, if V does not have any SA-summand T 6= V ,
i.e., {V } is the unique SA-decomposition of V .

Remark 2.9. If (Ti | i ∈ I) is an orthogonal family in SA(V ) with all Ti 6= 0, then (Ti | i ∈ I)
is an SA-decomposition of W =

∑
i

Ti, since every Ti is also an SA-submodule of W .

Any family (Uλ | λ ∈ Λ) in ΣSA(V ) has the supremum
∑
λ∈Λ

Uλ in Σ SA(V ), but even for

two SA-sums U1, U2 no infimum in ΣSA(V ) is in sight. This changes if one of the modules
U1, U2 is in SA(V ).

Remark 2.10. If W ∈ SA(V ), U ∈ ΣSA(V ) and U =
∑
i∈I

Wi with Wi ∈ SA(V ), then

W ∩ U =
∑

i∈I

(W ∩Wi), (2.7)

and so W∩U is an SA-sum in V . The module W∩U is the infimum of W and U in ΣSA(V ).
Furthermore W + U is the supremum of W and U in ΣSA(V ).

We cannot build up finite SA-decompositions from binary SA-decompositions, as is com-
mon for finite direct decompositions, but nevertheless a finite SA-decomposition may be
viewed as an iterated formation of weak complements of Σ SA-modules, due to the following
fact.

Proposition 2.11. Assume that (Ti | 1 ≤ i ≤ n) is a finite orthogonal family in SA(V ).

Let U :=
n∑

i=1

Ti ∈ ΣSA(V ). Then the chain in ΣSA(V )

U0 = {0V } ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un = U (∗)

with Ur :=
r∑

i=1

Ti (1 ≤ r ≤ n) has the property

Ur+1 = Ur ⊕w Tr+1 (0 ≤ r ≤ n). (2.8)

Proof. This follows from Theorem 2.2 since Ur+1 = Ur + Tr+1 and

Ur ∩ Tr+1 =

r∑

i=1

(Ti ∩ Tr+1) = 0.

�

Note that conversely the chain (∗) in ΣSA(V ) determines the family (Ti | 1 ≤ i ≤ n),
due to the uniqueness of weak complements (Theorem 2.4). If an infinite orthogonal family
(Ti | i ∈ I) in SA(V ) is given, then we see in the same way that for any module UJ :=

∑
i∈J

Ti

and k ∈ J we have

UJ = UJ\{k} ⊕w Tk. (2.9)

Definition 2.12. Given two SA-decompositions (Ti | i ∈ I), (Sj | j ∈ J) of V we say that
the second SA-decomposition refines the first one, if every module Sj is contained in some
module Ti.

If this happens then clearly every Sj is contained in a unique module Ti, since different
members of (Ti | i ∈ I) have intersection zero. We thus have a unique map λ : J → I with



8 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

Sj ⊂ Tλ(j) for each j ∈ J . This map λ is surjective, since otherwise (Sj | j ∈ J) would not
span V . It follows that for every i ∈ T

Ti =
∑

λ(j)=i

Sj (2.10)

and so (Sj | λ(j) = i) is an SA-decomposition of Ti. Now the following is obvious.

Theorem 2.13. Any R-module V has at most one SA-decomposition (Ti | i ∈ I), where
all Ti are SA-indecomposable. This is the finest SA-decomposition of V .

Proposition 2.14. Any two SA-decompositions have a common refinement.

Proof. Assume that (Ti | i ∈ I) and (Sj | j ∈ J) are two decompositions of V . We have

V =
∑

i∈I

Ti =
∑

j∈J

Sj .

Then, since Ti ∈ SA(V ), we have

Ti =
∑

j∈J

Ti ∩ Sj

(cf. Lemma 2.6.a), and so

V =
∑

(i,j)∈I×J

Ti ∩ Sj. (∗)

Furthermore, (Ti ∩ Sj) ∩ (Tk ∩ Sℓ) = 0 if (i, j) 6= (k, ℓ). Let K denote the subset of I × J
consisting of all (i, j) with Ti ∩ Sj 6= 0. Then (Ti ∩ Sj | (i, j) ∈ K) is a common refinement
of the SA-decompositions (Ti | i ∈ I) and (Sj | j ∈ J). �

It is evident that the SA-decomposition just constructed is the coarsest common re-
finement of the SA-decompositions (Ti | i ∈ I) and (Sj | j ∈ J) of V .

Proposition 2.15. If V is finitely generated, then every SA-decomposition (Ti | i ∈ I) of V
is finite (i.e., I is finite).

Proof. We pick a set of generators {s1, . . . , sr} of V . For every k ∈ {1, . . . , r} there is a finite
subset Ik of I such that sk ∈

∑
i∈Ik

Ti, whence Rsk ⊂
∑
i∈Ik

Ti. Thus

V =

r∑

k=1

Rsk ⊂
∑

i∈J

Ti

with J :=
r⋃

k=1

Ik finite. Suppose that J 6= I. Then choosing some ℓ ∈ I \ J we have

Tℓ ⊂
∑
i∈J

Ti. But this is impossible since all intersections Tℓ ∩ Ti with i ∈ J are zero, and so

Tℓ =
⋃

i∈J

(Tℓ ∩ Ti) = 0.

Thus J = I. �

Theorem 2.16. Assume that W and T are submodules of V with T ∈ SA(V ), W + T = V ,
W ∩ T = 0, (whence V = W ⊕w T by Theorem 2.2). Let (vλ | 1 ≤ λ ≤ d) be a system of
generators of V . Write vλ = wλ+ tλ with wλ ∈ W, tλ ∈ T . Then (tλ | 1 ≤ λ ≤ d) is a system
of generators of T .
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Proof. V =
∑
λ∈Λ

R(wλ + tλ). It follows that

V =
∑

λ∈Λ

Rwλ +
∑

λ∈Λ

Rtλ.

Intersecting with T we obtain

T = (ΣRwλ) ∩ T︸ ︷︷ ︸
0

+

(∑

λ∈Λ

Rtλ

)
∩ T =

∑

λ∈Λ

Rtλ.

�

Corollary 2.17. Let (Ti | i ∈ I) be an SA-decomposition of V . Then V is finitely generated
iff I is finite and each R-module Ti is finitely generated.

Proof. This is an immediate consequence of Proposition 2.15 and Theorem 2.16. �

In the case that R is commutative and V = R, considered as an R-module, we obtain
the following explicit description of all SA-decompositions of R. First note that by Propo-
sition 2.15 all SA-decompositions of R are finite.

Theorem 2.18. Assume that the semiring R is commutative. Then the SA-decompositions
(Ti | 1 ≤ i ≤ n) of R are the families (eiR | 1 ≤ i ≤ n) given by the complete finite
orthogonal systems (ei | 1 ≤ i ≤ n) of idempotents of R

(
eiej = δijei,

∑n
i=1 ei = 1

)
. In this

way the SA-decompositions of R correspond uniquely to the complete orthogonal systems of
idempotents of R. Every SA-decomposition of R is a direct decomposition of R.

Proof. If (ei | 1 ≤ i ≤ n) is a complete family of orthogonal idempotents of R, then it is
plain that

R =
n⊕

i=1

eiR,

and so (eiR | 1 ≤ i ≤ n) is also an SA-decomposition of R.
Conversely assume that (Ti | 1 ≤ i ≤ n) is an SA-decomposition of R. Then all Ti are

ideals of R, and so TiTj ⊂ Ti∩Tj = 0 for i 6= j. We pick elements e1, . . . , en of R with ei ∈ Ti

and

1 = e1 + · · ·+ en.

Multiplying by ek for some k ∈ {1, . . . , n} we obtain

ek =
n∑

i=1

ekei.

But for k 6= i we have ekei ∈ Tk ∩ Ti = 0, and conclude that ek = e2k. Thus {e1, . . . , en} is a
complete system of orthogonal idempotents of R. If x ∈ Ti then

x =

( n∑

j=1

ej

)
x =

n∑

j=1

ejx = eix,

since ejx ∈ TjTi = 0 for j 6= i. Conversely if x ∈ R and x = eix then x ∈ Ti, since eiR ⊂ Ti.
This proves that Ti = eiR. The ei are uniquely determined by the family of submodules

(Ti | 1 ≤ i ≤ n) of R, since R =
n∑

i=1

Ti and eix = x for x ∈ Ti, while ejx = 0 for x ∈ Tj . �
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Remark 2.19. If (Ti | i ≤ i ≤ n) is an SA-decomposition of a commutative semiring R,
viewed as an R-module, then the Ti are ideals of the semiring R with Ti ∩ Tj = TiTj = 0 for
i 6= j, and they can be viewed as semirings having as unit elements the idempotents ei from
above. Thus an SA-decomposition of R as an R-module is the same as a finite direct product
decomposition

R = T1 × · · · × Tn =

n∏

i=1

Ti

of R as a semiring.

We illustrate Theorem 2.18 by some examples. Let X be a topological space, and, as com-
mon, let C(X) denote the ring of continuous R-valued functions on X . This ring is equipped
with the “function ordering”, where f ≤ g iff f(x) ≤ g(x) for all x ∈ X . Furthermore let
C+(X) denote the positive cone of this partial ordering on C(X), i.e.,

C+(X) := {f ∈ C(X) | f ≥ 0},

a semiring lacking zero sums. Our interest is in the SA-submodules of the semiring C+(X),
viewed as a C+(X)-module. Note that C+(X) is the set of all continuous functions on X
with values in R≥0 = [0,∞[. The restriction of the function ordering to C+(X) coincides
with the minimal ordering, since for f ≤ g in C+(X) we have

g = f + (g − f),

and g − f ∈ C+(X).
It is plain that the function f ∈ C(X) is an idempotent of C(X) iff f has only values

in {0, 1}, and so f is the characteristic function χU of a clopen (= closed and open) subset
of Xj; χU(x) = 1 if x ∈ U , χU(x) = 0 if x ∈ X \ U . All these idempotents lie in C+(X).
Thus a complete orthogonal system (ei | i ≤ i ≤ n) of C+(X) corresponds uniquely to a

finite disjoint decomposition X =
⋃̇

iUi of X into clopen subsets via ei = χUi
. In particular

C+(X) itself is SA-indecomposable iff the topological space X is connected. In consequence
of Theorem 2.18 we can describe all SA-decompositions of C+(X) when the clopen subsets
of X are known. We give three examples. Some more notation: ]α, β[ (resp. [α, β]) denotes
the open (resp. closed) interval from α to β. Likewise for the half-closed intervals ]α, β]
and [α, β[.

Examples 2.20. We fix a topological subspace X of the real line R. Let R := C+(X).

a) If X is an interval of R (open, half-open, closed), then R is SA-indecomposable.

b) Assume that (xn | n ∈ N) is a strictly increasing sequence in R converging to x∞ :=
sup
n∈N

xn ∈ R. Let X = {xn | n ∈ N} ∪ {x∞}. The primitive idempotents of R are

precisely all elements
en := χ{xn} (n ∈ N),

and so the SA-indecomposable summands of R are the ideals

Tn := enR (n ∈ N)

of R, consisting of the R+-valued functions f on X with f(x) = 0 for x ∈ X \ {xn}.
For every n ∈ N we also have an idempotent gn of R with

e1 + · · ·+ en + gn = 1

and eign = 0 for 1 ≤ i ≤ n, namely the characteristic function χYn
of

Yn := {xi | i > n} ∪ {x∞}.
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These clopen sets Yn constitute a fundamental system of neighborhoods of x∞ in X.
The SA-decompositions (T1, . . . , Tn, Sn) of R which correspond to the orthogonal sys-
tems (e1, . . . , en, gn), i.e., Ti = Rei, Sn = Rgn, are co-final in the set of all SA-
decompositions of R under refinement. Note that the “decomposition socle”

dsoc(R) =
⊕

i∈N

Rei

of R (cf. [4, Definition 2.15]) is not an SA-summand of R, but is an SA-submodule
of R. It is the set {f ∈ R | f(x∞) = 0}.

c) Let X = Q ⊂ R. The clopen subsets of X are the disjoint unions of intervals

]α, β[ := {x ∈ Q | α < x < β}

with α, β ∈ (R ∪ {−∞,∞}) \ Q and α < β. Every such interval ]α, β[ provides an
idempotent eα,β := χ]α,β[ of R = C+(Q), and so an SA-submodule

Tα,β := eα,βR

consisting of all f ∈ R with f(x) = 0 for x < α or x > β. These submodules Tα,β

are a co-final system of SA-summands of R (with respect to reverse inclusion). If
γ ∈ ]α, β[ \Q, then

eα,β = eα,γ + eγ,β, eα,γ · eγ,β = 0.

Thus every module Tα,β is SA-decomposable. It follows that R contains no SA-
indecomposable SA-summands altogether.

Every finite sequence α1 < α2 < · · · < αn in R \ Q gives a partition of Q into
clopen intervals ]− ∞, α1[ , ]α1, α2[ , . . . , ]αn,∞[ , and thus a complete orthogonal
system of idempotents {e−∞,α1, eα1,α2 , . . . , eαn,∞} which corresponds to a direct sum
decomposition

R = T−∞,α1 ⊕ Tα1,α2 ⊕ · · · ⊕ Tαn,∞.

These decompositions are a co-final system in the set of all finite SA-decompositions
of R with respect to refinement.

3. The lattice SA(V)

Proposition 3.1. SA(V ) is a modular lattice. More precisely, if Wi are submodules with
W1 ≤ W2 and W2 is SA, then

W1 + (W2 ∩W3) = W2 ∩ (W1 +W3).

Proof. (⊆) is immediate. To prove (⊇), suppose x2 = x1 + x3 ∈ W2 for xi ∈ Wi. By
hypothesis x1, x3 ∈ W2, so x3 ∈ W2 ∩W3 and x2 ∈ W1 + (W2 ∩W3). �

Corollary 3.2. Suppose W1 ≤ W2,W are SA submodules of V , with W1 ∩ W = W2 ∩ W
and W1 +W = W2 +W. If W1 +W is SA, then W1 = W2.

Corollary 3.3. Given a set {Wi : i ∈ I} of distinct submodules of an SA-module V , for I
infinite, and any submodule W , either {Wi ∩ W : i ∈ I} or {Wi + W : i ∈ I} contains
infinitely many distinct submodules.

Definition 3.4. Let (Ti | i ∈ I) denote the set of all minimal non-zero SA-submodules
of V . (It can happen that this set is empty.) We define the SA-socle of V by

P := socSA(V ) :=
∑

i∈I

Ti
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(read P = 0 if I = ∅).

Note that if i, j ∈ I are different indices then Ti∩Tj = 0, and that Ti ∈ SA(P ) for every i ∈ I.
Thus (Ti | i ∈ I) is an SA-decomposition of the SA-socle P .

3.1. Krull dimension (in the sense of Lemonnier-Gordon-Robson).
SA(V ), being a modular lattice, admits a satisfying dimension theory, denoted SA-Kdim,

along the lines of Krull dimension, as defined and exposed elegantly in [3], which we use as
our model. Since quotient modules do not play an effective role over semirings, we need to
consider instead pairs (V,W ) where V % W. Fortunately, this theory already was developed
at the level of lattices by Lemonnier [5], and is developed in this generality in [6], so all we
need to do is put it in the present context.

Definition 3.5.

a) The pair (V,W ) is SA-artinian if every descending chain

S0 % S1 % S2 % . . .

of finitely generated non-zero SA-submodules of V containing W stops after finitely
many steps. The R-module V is SA-artinian if (V, 0) is SA-artinian.

b) The pair (V,W ) is SA-noetherian if every ascending chain

S0 $ S1 $ S2 $ . . .

of finitely generated non-zero SA-submodules of V containing W stops after finitely
many steps. The R-module V is SA-noetherian if (V, 0) is SA-noetherian.

c) The pair (V, V ) has SA-Kdim equal to −1. For W 6= V, SA-Kdim(V,W ) = 0 if for
every descending chain

W0 % W1 % W2 % . . . (3.1)

in SA(V ;W ) stops after finitely many steps.
In general, SA-Kdim(V,W ) (if it exists) is the smallest ordinal θ for which for

every chain (3.1) one must have SA-Kdim(Wi,Wi+1) < θ for almost all i. Such a
chain is called θ-stable. SA-Kdim(V ) (if it exists) is SA-Kdim(V, 0).

d) A pair (W,W ′) of SA-sumodules is called SA-critical if SA-Kdim(W,W ′) = θ but
SA-Kdim(W,W ′′) < θ whenever W % W ′′ % W ′.

e) The submodule W is θ-SA-critical if (W, 0) is SA-critical.

This leads to a natural generalization of the socle (cf. Definition 3.4). One can define the
SA-critical socle [6, p. 146] to be the sum of all SA-critical submodules of V , of minimal
SA-Kdim, but we do not go in that direction.
Unfortunately, SA-artinian R-modules seem to be not very frequent, but here is an in-

stance.

Definition 3.6. A set of generators T of V is SA-adapted if every SA-submodule W of V
is generated by the set W ∩ T .

Example 3.7. If V has an SA-adapted finite set of generators, then V is certainly SA-
artinian.

Hence, some of the results emerge more neatly for finitely generated SA-modules, and we
need some more terminology.

Notation 3.8.
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a) Given a module V over a semiring R, we denote the set of all finitely generated
SA-modules of V by SAf(V ). We furthermore denote the set of all sums

∑
i∈I

Wi of

families (Wi | i ∈ I) in SAf (V ) by ΣSAf(V ) and the subset of all such sums with
finite I by Σf SAf (V ).

b) Observe that the modules U ∈ Σf SAf(V ) are again finitely generated. Moreover it is
easily seen that Σf SAf(V ) is the set of all finitely generated modules U ∈ ΣSAf(V ).

c) We often call a module W ∈ SAf(V ) an SAf -submodule of V , and call a module
U ∈ ΣSAf(V ) a ΣSAf -submodule of V , or a SAf -sum in V , furthermore call a
module U ∈ Σf SAf(V ) a finite SAf -sum in V .

d) The pair (V, V ) has SAf -Kdim equal to −1. For W 6= V, SAf -Kdim(V,W ) = 0 if
for every descending chain

W0 % W1 % W2 % . . . (3.2)

in SAf(V ;W ) stops after finitely many steps. In general, SAf -Kdim(V,W ) (if it
exists) is the smallest ordinal θ for which for every chain (3.2) one must have SAf -
Kdim(Wi,Wi+1) < θ for almost all i. SAf -Kdim(V ) (if it exists) is SAf -Kdim(V, 0).

The following results are really special cases of results in [5, 6] as indicated above.

Proposition 3.9 ([6, 3.1.8]). Every SA-noetherian module has SA-Kdim.

Proposition 3.10 ([6, 1.3.7]). Define the composition length ℓ(V,W ) from V to W ⊂ V
to be the length m of a chain (if it exists)

V = W0 % W1 % · · · % Wm = W (3.3)

for which, for each i, the chain Wi % Wi+1 cannot be refined to Wi % W ′
i % Wi+1. Then

ℓ(V,W ) is well-defined (independent of the choice of chain (3.3)), and additive in the sense
that

ℓ(V,W ) = ℓ(V,W ′) + ℓ(W ′,W ), ∀V % W ′ % W.

(This holds in either context, SA(V ) or SAf (V ).) Analogously, we have

Proposition 3.11. SA-Kdim(V ) = sup{SA-Kdim(V,W ), SA-Kdim(W )}.

3.2. SA-equivalence and SA-uniform modules.
A neuralgic point, for the sake of brevity often not adequately reflected in our terminology,

is the fact that for W ∈ Mod(V ) the set SA(W ) is definitely bigger than Mod(W ) ∩ SA(V )
except in the case that W ∈ SA(V ).
We introduce on Mod(V ) an equivalence relation which plays a central role throughout

the subsection. For the remainder of this section, the module V is LZS.

Definition 3.12. Given W1,W2 ∈ Mod(V ), we say that W1 and W2 are SA-equivalent
(in V ) if for any S ∈ SA(V ) either W1 ∩ S = W2 ∩ S = 0 or both W1 ∩ S and W2 ∩ S are
nonzero (where “0” means the zero module {0V } ). We then write W1 ∼e W2. In the rare
case where a second module V ′ is under consideration and W1,W2 are also submodules of V ′,
we speak more precisely about the above equivalence relation as an SA(V )-equivalence, or
specify “in V ”.

SA-equivalence is closely related to a notion of “SA-essential extension” of R-modules, to
be defined now, which vaguely resembles the all-important notion of “essential extension” in
the theory of modules over rings.
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Definition 3.13. If W,W ′ ∈ Mod(V ), we say that W ′ is an SA-essential extension

of W (in V ), and write W ⊂e W ′, if W ⊂ W ′ and for S ∩ W 6= 0 every S ∈ SA(V ) with
S ∩W ′ 6= 0.2

Remark 3.14. If W,W ′ are submodules of V with W ⊂ W ′, then W ⊂e W
′ means the same

as W ∼e W
′.

We list easy facts about SA-equivalence and SA-extensions.

Lemma 3.15. Assume that W1,W2, X are submodules of V with W1 ⊂ X ⊂ W2. Then the
following are equivalent.

(1) W1 ⊂e W2.

(2) W1 ⊂e X and X ⊂e W2.

Proof. (1) ⇒ (2): If T ∈ SA(V ) with T ∩ X 6= 0, then T ∩ W2 6= 0, whence T ∩ W1 6= 0.
This proves that W1 ⊂e X . We have X ∼e W1 ∼e W2, and so X ∼e W2, whence X ⊂e W2.
(2) ⇒ (1): We have W1 ∼e X ∼e W2, whence W1 ∼e W2, and so W1 ⊂e W2. �

Remark 3.16. Assume that (Wi | i ∈ I) and (W ′
i | i ∈ I) are families in Mod(V ) with

Wi ∼e W
′
i for every i ∈ I. Then

∑

i∈I

Wi ∼e

∑

i∈I

W ′
i . (3.4)

Proof. Let S ∈ SA(V ). Then

S ∩

(∑

i

Wi

)
=

∑

i

S ∩Wi, S ∩

(∑

i

W ′
i

)
=

∑

i

S ∩W ′
i ,

and so

S ∩
∑

i

Wi 6= 0 ⇔ ∃
i∈I

S ∩Wi 6= 0 ⇔ ∃
i∈I

S ∩W ′
i 6= 0 ⇔ S ∩

∑

i

W ′
i 6= 0.

�

Note in particular that

W ∼e W
′ ⇒ W +X ∼e W

′ +X (3.5)

for any X ∈ Mod(V ).

Remark 3.17. Let W1,W2 ∈ Mod(V ) and S ∈ SA(V ) be given. Then

W1 ∼e W2 ⇒ S ∩W1 ∼e S ∩W2.

Proof. If T ∈ SA(V ) and W1 ∼e W2, then S ∩ T ∈ SA(V ), and so

(W1 ∩ S) ∩ T 6= 0 ⇔ (W2 ∩ S) ∩ T 6= 0.
�

Proposition 3.18. Assume that W1 and W2 are SA-submodules of V . Then

W1 ∼e W2 ⇔ W1 ∩W2 ⊂e W1 and W1 ∩W2 ⊂e W2.

2It may seem appropriate to reserve the letter “e” for a straight generalization of “essential extensions”
to modules over semirings, as defined in [2, p.95] (there called “essential module-monomorphisms”), and to
label SA-equivalences and SA-extensions by “sae” instead of “e”. But in the present paper the true essential
extensions do not show up, and so we feel free to use the simpler label “e”.
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Proof. (⇐): By use of Remark 3.14 we see that W1∩W2 ∼e W1 and W1∩W2 ∼e W2, whence
W1 ∼e W2.

(⇒): Using Remark 3.17 we see that W1 ∩W2 ∼e W2 ∩W2 = W2 and in the same way that
W1 ∩W2 ∼e W1. Thus, again by Remark 3.14,

W1 ∩W2 ⊂e W1, W1 ∩W2 ⊂e W2. �

Proposition 3.19. Assume that (Vi | i ∈ I) is an orthogonal family in SA(V ), and further-
more that (Wi | i ∈ I) is a family in Mod(V ) with Wi ⊂ Vi for each i ∈ I. Then

∑

i

Wi ⊂e

∑

i

Vi ⇔ ∀ i ∈ I : Wi ⊂e Vi.

Proof. (⇒): Pick some k ∈ I. Then

Vk ∩

(∑

i

Wi

)
=

∑

i

Vk ∩Wi = Vk ∩Wk = Wk,

and Vk ∩
(∑

i

Vi

)
= Vk. We conclude by means of Remarks 3.14 and 3.17 that Wk ⊂e Vk.

(⇐): We have Wi ∼e Vi for each i ∈ I and conclude by Remark 3.16 that
∑
i

Wi ∼e

∑
i

Vi,

whence by Remark 3.14 that
∑
i

Wi ⊂e

∑
i

Vi. (Here we did not need the orthogonality

assumption on (Vi | i ∈ I).) �

Lemma 3.20. If V is SA-artinian, Then socSA(V ) ⊂e V .

Proof. It is immediate that every non-zero S ∈ SA(V ) contains a minimal non-zero SA-
module Ti. Thus S ∩ socSA(V ) 6= 0. �

Definition 3.21. We call a submodule W of V SA-uniform (in V ), if for every S ∈ SA(V )
with S ∩W 6= 0 the extension S ∩W ⊂ W is SA-essential (in V ). We denote the set of all
these submodules W of V by Modu(V ) and its subset SA(V ) ∩Modu(V ) by SAu(V ).3

Note that the zero submodule 0 is SA-uniform in V , and furthermore, that V ∈ Modu(V )
iff S ∩ T 6= 0 for any two non-zero SA-submodules S, T of V .

Theorem 3.22. Modu(V ) is a union of full SA-equivalence classes in Mod(V ). In other
words, if W,W ′ ∈ Mod(V ) are SA-equivalent (in V ) and W is SA-uniform, then W ′ is
SA-uniform.

Proof. Let S ∈ SA(V ) be given with S∩W ′ 6= 0. FromW ∼e W
′ we conclude by Remark 3.17

that W ∩ S ∼e W
′ ∩ S, whence W ∩ S 6= 0, and so W ∩ S ∼e W . Since also W ∼e W

′ we
conclude that W ′ ∩ S ∼e W

′. �

Theorem 3.23. Let ξ be an SA-equivalence class in Modu(V ). Then there exists a unique
member M(ξ) of ξ such that

ξ = {W ∈ Mod(V ) | W ⊂e M(ξ)}. (3.6)

3These notions can be viewed in terms of the general theory from [6]. By [6, 3.2.4] any pair (M,N)
with SA-Kdim has SA-critical submodules (cf. Definition 3.5). By [6, 3.2.6] every SA-critical module is
SA-uniform.
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Proof. We choose a labeling of all elements of ξ, ξ = (Wi | i ∈ I), and fix an index 0 ∈ I.
We then define M(ξ) =

∑
i∈I

Wi. Since Wi ∼e W0 for every i ∈ I, we conclude by Remark 3.16

that
M(ξ) ∼e

∑

i∈I

W0 = W0.

Thus M(ξ) ∈ ξ, and more precisely M(ξ) is the unique maximal element of the poset ξ.
If W is a submodule of M(ξ) then W ∈ ξ iff W ∼e M(ξ) iff W ⊂e M(ξ). �

By this theorem the M(ξ) are precisely all maximal SA-uniform submodules of V .
We know nearly nothing about the equivalence classes ξ in Modu(V ) with ξ ∩ SA(V ) = ∅,

but when ξ contains SA-submodules of V we get more insight about ξ (than provided by
Theorems 3.22 and 3.23) by SA-restricting ξ to ΣSA(V )∩Modu(V ), as we explain now. We
first give a description of the SA-uniform modules in ΣSA(V ).

Proposition 3.24. Let (Wi | i ∈ I) be a family of non-zero SA-submodules of V . The
following are equivalent.

(1) U :=
∑
i∈I

Wi is SA-uniform in V .

(2) All Wi ∈ SAu(V ), and Wi ∼e Wj for i 6= j.

(3) All Wi ∈ SAu(V ), and Wi ∩Wj 6= 0 for i 6= j.

Proof. (1) ⇒ (2): Since Wi is in SA(V ) and Wi 6= 0, we have Wi = Wi ∩ U ⊂e U , whence
Wi ∼e U and Wi is SA-uniform (cf. Theorem 3.22). It follows that Wi ∼e Wj for i 6= j.

(2) ⇔ (3): Evident.

(2) ⇒ (1): Let S ∈ SA(V ) and S ∩ U 6= 0. We have S ∩ U =
∑
i∈I

S ∩ Wi, and so there

exists i ∈ I with S ∩ Wi 6= 0, implying S ∩ Wi ⊂e Wi. Fixing an index 0 ∈ I we have
U =

∑
i∈I

Wi ∼e

∑
i∈I

W0 = W0 and conclude by Theorem 3.22 that U is SA-uniform. �

Assume now that ξ is an SA-equivalence class in Modu(V ) \ {0} with ξ ∩ SA(V ) 6= ∅. We
write ξ ∩ SA(V ) = ξ ∩ SAu(V ) = {Wi | i ∈ J} and define

U(ξ) :=
∑

i∈J

Wi ∈ ΣSA(V ). (3.7)

Choosing an index 0 ∈ J we have

U(ξ) ∼e

∑

i∈J

W0 = W0. (3.8)

Thus U(ξ) is the unique biggest module in the set ξ ∩ ΣSA(V ).

Proposition 3.25. Assume again that ξ contains a non-zero SA-submodule of V . Then

ξ ∩ SA(V ) = {W ∈ SAu(V ) | W 6= 0, W ⊂ U(ξ)}, (3.9)

ξ ∩ ΣSA(V ) = {U ∈ ΣSA(V ) | U ⊂e U(ξ)}. (3.10)

If in addition V is SA-artinian, then ξ ∩ ΣSA(V ) contains a smallest module P (ξ), and

ξ ∩ ΣSA(V ) = {U ∈ ΣSA(V ) | P (ξ) ⊂ U ⊂ U(ξ)}. (3.11)

Proof. In (3.9) the inclusion ”⊃” is obvious, while “⊂” follows from (3.8). If U ∈ ΣSA(V )
and U ∈ ξ then U ⊂ U(ξ) and U ∼e U(ξ), whence U ⊂e U(ξ). Thus (3.10) is evident. If V
is SA-artinian, then the set ξ ∩ SA(V ) contains a smallest module P (ξ) and so ξ ∩ SA(V )



SUMMAND ABSORBING SUBMODULES 17

is the set of all U ∈ ΣSA(V ) with P (ξ) ⊂e U ⊂e U(ξ). Since we know that P (ξ) ⊂e U(ξ)
the “e” in these inclusions can be omitted. �

Lemma 3.26. Assume that S and T are non-zero SA-uniform SA-submodules of V . Then
S ∼e T iff S ∩ T 6= 0.

Proof. If S ∼e T , then S ∩ T ⊂e S and thus certainly S ∩ T 6= 0. Conversely, if S ∩ T 6= 0
then, due to the SA-uniformity of S and T , we have S ∩ T ⊂e S and S ∩ T ⊂e T , and so
S ∼e T . �

Theorem 3.27.

a) Assume that (Ti | i ∈ I) is a maximal orthogonal family of non-zero SA-uniform
submodules of V . Then (Ti | i ∈ I) is a system of representatives of all SA-equivalence
classes in SAu(V ) \ {0}.

b) If (Sj | j ∈ J) is a second such family, then there is a bijection λ : I → J with
Ti ∼e Sλ(i) for all i ∈ I, and

∑
i∈I

Ti ∼e

∑
j∈J

Sj.

Proof. This is an immediate consequence of the preceding Lemma 3.26. �

We are ready to define an invariant for R-modules lacking zero sums.

Definition 3.28. The SA-uniformity dimension dimsau(V ) of V is the cardinality of the
set of all SA-equivalence classes of nonzero SA-uniform submodules of V . In other terms,

1 + dimsau(V ) = card(SAu(V )/ ∼e).

(In particular, dimsau(V ) = 0 iff V does not contain any non-zero SA-uniform submodule.)

Theorem 3.27 provides the following more elementary description of this invariant.

Corollary 3.29. dimsau(V ) is the cardinality |I| of any maximal orthogonal family (Ti | i ∈
I) of non-zero SA-uniform submodules of V .

Theorem 3.30. Assume that (Vλ | λ ∈ Λ) is a family of SA-submodules of V with
∑
λ∈Λ

Vλ = V.

a) Then

dimsau(V ) ≤
∑

λ∈Λ

dimsau(Vλ). (3.12)

b) If in addition the family (Vλ) is orthogonal (i.e., Vλ ∩ Vµ = 0 for λ 6= µ), then we
have equality,

dimsau(V ) =
∑

λ∈Λ

dimsau(Vλ). (3.13)

Proof. a): Let a non-zero SA-uniform module S be given. Then

S =
∑

λ∈Λ

S ∩ Vλ,

and thus S ∩ Vλ 6= 0 for at least one index λ. This implies that S ∩ Vλ ∈ SAu(Vλ) and
S ∼e S ∩ Vλ. Thus the natural map

•⋃

λ∈Λ

(SAu(Vλ) \ {0})/ ∼e −→ (SAu(V ) \ {0})/ ∼e

is surjective. Comparing cardinalities gives the first claim (3.12).
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b): If Vλ ∩ Vµ = 0 for λ 6= µ, then any two non-zero modules S ∈ SA(Vλ), T ∈ SA(Vµ)
have intersection zero and thus certainly are not SA-equivalent. Thus now the map (∗) is
also injective, and in (3.12) holds equality. �

Remark 3.31. It is clear that for every SA-submodule V ′ of V we have

dimsau(V
′) ≤ dimsau(V ).

Thus we can complement (3.12) by the inequality

sup
λ∈Λ

dimsau(Vλ) ≤ dimsau(V ). (3.14)

If dimsau(V ) is infinite it follows from (3.12), (3.14) that

dimsau(V ) = max
λ∈Λ

dimsau(Vλ) =
∑

λ∈Λ

dimsau(Vλ).

In a similar vein we see, in the case that the set Λ is finite, that dimsau(V ) is finite iff
dimsau(Vλ) is finite for each λ. Then (3.13) holds iff the family (Vλ | λ ∈ Λ) is orthogonal.

4. SAf-hereditary modules with SA-Kdim

By working only with finitely generated SA-submodules of V , we obtain results on a wide
class of submodules U of V , to be put to use in §5 and §6. Throughout §4–§6, we assume
for simplicity that the R-module V is LZS.

Definition 4.1.

a) We say that the R-module V is SAf-hereditary if for any submodule W ∈ SAf(V ),
W ′ ∈ SAf (V ) for all W ′ ∈ SA(V ) with W ′ ⊂ W .

b) We say that V is finitely SA-accessible (= SAF-accessible for short) if V is both
SAf -hereditary and SA-Kdim(V ) exists.

Note that if V is finitely generated and SAf -hereditary, then SA(V ) = SAf (V ). We
present some ways to obtain new SAF-accessible modules from old ones.

Proposition 4.2. Assume that V is an R-module and (Vi | i ∈ I) is a family of submodules
of V with V =

⋃
i∈I Vi. Assume that this family is upwardly directed, i.e., for every i, j ∈ I

there is some k ∈ I with Vi ⊂ Vk, Vj ⊂ Vk. Then, if every Vi is SAf -hereditary, V also is
SAf -hereditary; and if every SAf -Kdim(Vi) ≤ θ, then V also has SAf -Kdim ≤ θ.

Proof. a): Assume that the Vi are SAf -hereditary. Let W ∈ SAf (V ), W ′ ∈ SA(V ) and
W ′ ⊂ W . Since W is finitely generated, there exists some i ∈ I with W ⊂ Vi. Both W
and W ′ are in SA(V ), and so are SA in Vi. Because Vi is SAf -hereditary and W is finitely
generated, W ′ also is finitely generated.

b): Assume now that V has SAf -Kdim ≤ θ. Given a descending chain (Wi | i ∈ I) in
SAf(V ) then for any W0 there exist some i ∈ I with W0 ∈ SAf(Vi). By the same argument
as above all Wi ∈ SAf(Vi) for all i > i0. Since SAf -Kdim(Vi) ≤ θ, the chain is θ-stable. �

For later reference we also quote an obvious fact.

Lemma 4.3. Assume again that V is the union of an upward directed family (Vi | i ∈ I) of
submodules. If U is a finitely generated submodule of V then U ⊂ Vi for some i ∈ I.

Proposition 4.4. Assume that a direct decomposition V =
⊕

i∈I Vi of an R-module V is
given. If each Vi is SAf -hereditary, then V is SAf -hereditary. If each SAf -Kdim(Vi) ≤ θ,
then V has SAf -Kdim ≤ θ.
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Proof. a) It is immediate from the definition of the summand absorbing property (cf. (SA))
that the SA-submodules of V are the direct sums

⊕
i∈I Wi with each Wi an SA-submodule

of Vi. It follows by use of Lemma 4.3, that the finitely generated SA-submodules of V are
the direct sums

⊕
i∈J Wi with Wi ∈ SAf(Vi) and J ⊂ I finite.

b) If the modules Vi are SAf -hereditary and W =
⊕

i∈J Wi ∈ SAf (V ), then every SA-
submodule W ′ of W has the form W ′ =

⊕
i∈J W

′
i with W ′

i ⊂ Wi, and so W ′
i ∈ SAf(Vi),

whence W ′ ∈ SAf (V ). Thus V is SAf -hereditary.

c) Assume now that each SAf -Kdim(Vi) ≤ θ and I is finite. Let (W ′
k | k ∈ N0) be a decreasing

chain in SAf(V ). We want to verify that this chain is θ-stable. We have W ′
k =

⊕
i∈I W

′
i,k

with W ′
i,k ∈ SAf(Vi). Since SAf -Kdim(Vi) ≤ θ, each chain (W ′

i,k | k ∈ N0) is θ-stable.
It follows that the chain (W ′

k) is θ-stable. This proves that V has SAf -Kdim ≤ θ for I
finite. If I is infinite, and all SAf -Kdim(Vi) ≤ θ, then for every finite J ⊂ I the submodule
VJ :=

⊕
i∈J Vi has SAf -Kdim ≤ θ, as proved. Invoking Proposition 4.2 we see that V has

SAf -Kdim ≤ θ. �

Theorem 4.5. Assume that U is an ΣSAf -submodule of an R-module V .

a) If V is SAf -hereditary, then U is SAf -hereditary, and

ΣSAf(U) = {X ∈ ΣSAf (V ) | X ⊂ U}. (4.1)

b) If V is SAF-accessible then U is SAF-accessible.

Proof. We choose a family (Wi | i ∈ I) in SAf(V ) with U =
∑

i∈I Wi.
a): Let W ∈ SAf (U), W ′ ∈ SA(U) and W ′ ⊂ W . Then

W =
∑

i∈I

W ∩Wi , W ′ =
∑

i∈I

W ′ ∩Wi.

Every Wi is in SA(U) and so W ∩ Wi and W ′ ∩ Wi are in SA(U). These modules are
contained in the SA-submodule Wi of U and so are SA in Wi. Since Wi is SA in V , they
are SA in V . Moreover, since V is SAf -hereditary, all the modules W ∩ Wi, W

′ ∩ Wi are
finitely generated. Since W =

∑
i∈I W ∩Wi this proves that W is an SAf -sum in V , whence

SAf(U) ⊂ ΣSAf (V ), and thus

ΣSAf(U) ⊂ ΣSAf(V ).

On the other hand, every SAf -submodule X of V which is contained in U is a SAf -sum
in U . This proves assertion (4.1).
Moreover, if I is finite, we conclude from W ′ =

∑
i∈I W

′∩Wi that W
′ ∈ SAf (U), since all

W ′∩Wi ∈ SAf(U). This proves for I finite that U is SAf -hereditary. If I is infinite, then the
R-module UJ :=

∑
i∈J Wi is SAf -hereditary for every finite J ⊂ I. Invoking Proposition 4.2

we see that U is SAf -hereditary.

b): Assume now that V is SAF-accessible. We first consider the case that I is finite. We
proceed as in the last part of the proof of Proposition 4.4. Assume that (W ′

k | k ∈ N0) is
a decreasing chain in SAf(U) with W ′

0 = W . For every i ∈ I the modules Wi ∩ W ′
k are

SAf -submodules of V , as just proved, and so (Wi ∩ W ′
k | k ∈ N0) is a decreasing chain in

SAf(V ). Since V has SAf -Kdim ≤ θ, all these chains (W ′
i ∩ W ′

k | k ∈ N) with i running
through the finite set I, are θ-stable. Since W ′

k =
∑

i∈I W ∩ W ′
k it follows that the chain

(W ′
k | k ∈ N) is θ-stable. This proves that U has SAf -Kdim ≤ θ and so is SAF-accessible.
If I is infinite, then for any finite J ⊂ I the module UJ =

∑
i∈J Wi is SAF-accessible, and

so U is SAF-accessible by Proposition 4.2. �
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5. The height filtration

Again let V be any LZS module over a semiring R.

Definition 5.1. Given a submodule U and an SA-submodule W of V , we say that U dom-

inates W , if W is contained in the convex hull Û of U in V , i.e., in the smallest SA-
submodule of V containing U , cf. Proposition 1.8.

Let On denote the set of ordinal numbers of cardinality ≤ 22
|V |
. In §6 we will gain some

insight in the dominance relation for submodules W,U ∈ ΣSAf(V ) (cf. Notations 3.8) by
use of a “height function”

h : Σ SAf(V ) → On,

to be established now. The modules V , in which this works well, are the SAF-accessible
modules defined in §4.
We first construct a family (V 0

t | t ≤ ω) and a strictly increasing chain V0 $ V1 $ · · · $ Vω

in Σ SAf (V ), indexed by ordinal numbers. We proceed by transfinite induction. We do not
assume anything about the R-module V , except that V is LZS, as always, but it seems that
the construction is really useful only if V has some SA-Kdim.

Construction 5.2. Let

V0 := V 0
0 = {0},

V 0
1 := the sum of all minimal W 6= 0 in SAf(V ),

V1 := V0 + V 0
1 = V 0

1 .

Assume that V 0
s and Vs are already defined for all s < t ∈ On.

A) Assume that t is not a limit ordinal, so t = τ + 1 for a unique τ ∈ On.
Case I: There exists no SA-critical W ∈ SAf(V ) with W 6⊂ Vτ . The construction

stops with ω := τ .
Case II: Otherwise. We define V 0

t = V 0
τ+1 as the sum of all W ∈ SAf (V ) which

are SA-critical and not contained in Vτ , and define Vt := Vτ + V 0
τ+1.

B) Assume that t is a limit ordinal. We put V 0
t = {0}, Vt =

⋃
s<t

Vs.

Note that Vs $ Vt for all s < t ≤ ω, and that all modules V 0
t and Vt are elements of

Σ SAf (V ). The strictly ascending chain (Vt) stops with a module Vω, ω ∈ On, which may or
may not be a limit ordinal.

Definition 5.3.

a) The height hV (U) of a submodule U of V with U ⊂ Vω is the minimum of all ordinals
t ≤ ω with U ⊂ Vt. This minimum exists, since the set {t ∈ On | t ≤ ω} is well
ordered.

b) Clearly, if U ⊂ Vω and t ∈ On, t ≤ ω, then

hV (U) ≤ t ⇔ U ⊂ Vt. (5.1)

We call the family (Vt | t ≤ ω) the height filtration in V (or: of Vω).

Given any module V over a semiring R we denote by Ṽ the sum of all W ∈ SAf(V ). This

is the top element of the poset Σ SAf (V ). Clearly Ṽ is also the union of all U ∈ Σf SAf(V )

(cf. Notations 3.8). If V is finitely generated then, of course, Ṽ = V .
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Theorem 5.4. Assume that SA-Kdim(V ) ≤ θ. Then Vω coincides with the maximal SAf -

sum Ṽ in V .

Proof. Clearly Vω ⊂ Ṽ . Suppose that Vω 6= Ṽ . Then there exists some W ∈ SAf (V ) with
W 6⊂ Vω Since SA-Kdim(V ) ≤ θ, there exists some SA-critical W ′ ∈ SAf (V ) with W ′ ⊂ W ,

with W ′ 6⊂ Vω. But this contradicts the definition of Vω. Thus Vω = Ṽ . �

In the following we usually write h(U) instead of hV (U), whenever it is clear from the
context, which R-module V is under consideration. We concentrate on a study of the heights
of the SAf -sums in V . We will assume almost everywhere that SA-Kdim(V ) ≤ θ, so that
we catch all SAf -sums in the height filtration due to Theorem 5.4.

Proposition 5.5. Assume that SA-Kdim(V ) ≤ θ. Assume furthermore that (Uλ | λ ∈ Λ)
is a family in ΣSAf (V ) and U :=

∑
λ∈Λ

Uλ. Then

h(U) = sup
λ∈Λ

h(Uλ). (5.2)

Proof. Let t := h(U). Of course h(Uλ) ≤ t for all λ ∈ Λ. Suppose there exists an ordinal
number τ < t with h(Uλ) ≤ τ for all λ ∈ Λ. Then Uλ ⊂ Vτ for all λ, and so U ⊂ Vτ . But this
means that h(U) ≤ τ , a contradiction. Thus t is the least upper bound of (h(Uλ) | λ ∈ Λ). �

Corollary 5.6. Assume again that SA-Kdim(V ) ≤ θ and (Uλ | λ ∈ Λ) is a family in
ΣSAf (V ). Assume furthermore that the height of U :=

∑
λ∈Λ

Uλ is not a limit ordinal. Then

h(U) = max
λ∈Λ

h(Uλ). (5.3)

Proof. Let t := h(U), tλ := h(Uλ) for λ ∈ Λ. Then supλ∈Λ tλ = r, as we have seen. If t is not
a limit ordinal, this implies that there exists λ ∈ Λ with tλ = t. �

In the following proposition we do not need the assumption that SA-Kdim(V ) ≤ θ.

Proposition 5.7. Assume that U is a sum of finitely many finitely generated SA-submodules
of V (i.e., U ∈ Σf SAf(V ), cf. Definition 3.8). Then h(U) is not a limit ordinal.

Proof. U has a finite system S of generators, S = {s1, . . . , sm}. For each i ∈ {1, . . . , m}
there is a smallest ordinal ti with si ∈ Vti , and clearly ti is not a limit ordinal. Let tk denote
the largest of the ti. This is the smallest ordinal τ of ≤ ω with S ⊂ Vτ , whence U ⊂ Vτ .
Thus h(U) = tk. �

Definition 5.8.

a) Assume that t is an ordinal number with t ≤ ω, and that t is not a limit ordinal. As
common we denote the ordinal number τ with τ + 1 = t by t − 1. We call a module
W ∈ SAf(V ) t-critical, if W is SA-critical with W 6⊂ Vt−1. We denote the set of
all t-critical SAf -modules in V by SAt(V ).

b) If τ ≤ ω is a limit ordinal we put SAτ (V ) := ∅.
We furthermore define

SAmin(V ) :=
⋃

t≤ω

SAt(V ),

and we call the elements of this set the height-critical SAf-submodules of V .
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Theorem 5.9. Assume that V is SAF-accessible, and that U is an SA-submodule of V of
height h(U) = t. Then for any τ ≤ t the following holds:

SAτ (U) = {W ∈ SAτ (V ) | W ⊂ U}, (5.4)

Uτ = U ∩ Vτ . (5.5)

Proof. We verify this by induction on τ . For τ = 0 both assertions are obvious. Let τ > 0,
and assume first that τ is not a limit ordinal and (5.4), (5.5) are true for τ − 1. If W is an
SA-submodule of U , then

W ∈ SAf(V ) ⇔ W ∈ SAf(U),

since U is in SA(V ). We conclude from Uτ−1 = U ∩ Vτ−1 that W ∈ SAτ (U) iff W 6⊂ Uτ−1

iff W 6⊂ Vt−1 iff W ∈ SAτ (V ). This proves (5.4) for the ordinal τ . Let {Wi | i ∈ I} denote
the set of all τ -critical submodules of U and {W ′

k | k ∈ K} denote the set of τ -critical
submodules of V not contained in U . Thus

Uτ = Uτ−1 +
∑
i∈I

Wi,

Vτ = Vτ−1 +
∑
i∈I

Wi +
∑
k∈K

W ′
k,

whence

U ∩ Vτ = U ∩ Vτ−1 +
∑
i∈I

Wi +
∑
k∈K

U ∩W ′
k

= Uτ−1 +
∑
i∈I

Wi +
∑
k∈K

U ∩W ′
k

= Uτ +
∑
k∈K

U ∩W ′
k.

Now U ∩ W ′
k ∈ SAf(V ) since V is SAf -hereditary and U ∩ W ′

k $ W ′
k. Due to the τ -

criticality of W ′
k it follows that U ∩W ′

k ⊂ Vτ−1, and thus U ∩W ′
k ⊂ U ∩Vτ−1 = Uτ−1, so that

altogether we obtain that U ∩ Vτ = Uτ .
Assume finally that τ is a limit ordinal. Then SAτ (U) = SAτ (V ) = ∅, and so (5.4) holds

trivially. By induction hypothesis U ∩ Vσ = Uσ for σ < τ . Thus

U ∩ Vτ = U ∩

(∑

σ<τ

Vσ

)
=

∑

σ<τ

U ∩ Vσ =
∑

σ<τ

Uσ = Uτ ,

which proves (5.5). �

Corollary 5.10. Assume again that V is SAF-accessible. Let U ∈ ΣSAf (V ). Recall from
Theorem 4.5.(b) that U is SAF-accessible. Let t := hV (U).

a) If U ′ ∈ ΣSAf(U) then U ′ ∈ ΣSAf (V ) and hU (U
′) = hV (U

′). In particular t = hU(U).

b) U is the sum of all modules W ∈ SAτ (V ) with W ⊂ U , τ ≤ t.

Proof. a): The height hU(U
′) is the minimal ordinal τ such that U ′ ⊂ Uτ . Since Uτ = U ∩Vτ

(cf. (5.5)), this is also the minimal ordinal τ with U ′ ⊂ Vτ , and so hU(U
′) = hV (U

′).

b): We have t = hU(U). Now U is the sum of all W ∈ SAτ (U) with τ ≤ t, as is clear
by Construction 5.2 and Theorem 5.4. By (5.4) these are the W ∈ SAτ (V ) with W ⊂ U
and τ ≤ t. �



SUMMAND ABSORBING SUBMODULES 23

6. Primitive SAf -modules

Definition 6.1. Assume that SA-Kdim(V ) ≤ θ.

a) We call a module W ∈ SAf (V ) primitive in V if W is τ -critical for some τ ≤ ω

(and so W ⊂ V 0
τ , h(W ) = τ), but W 6⊂ V̂τ−1 (i.e., W is not dominated by Vτ−1, cf.

Definition 5.1). We define

SAτ,prim(V ) := set of all primitive W ∈ SAf(V ) of height τ. (6.1)

SAprim(V ) :=
⋃

τ≤ω

SAτ,prim(V ). (6.2)

b) If T ∈ ΣSAf (V ), h(T ) = r, we set for τ ≤ t

SAprim(T, V ) = {W ∈ SAprim(V ) | W ⊂ T} (6.3)

and for τ ≤ t

SAτ,prim(T, V ) = {W ∈ SAτ,prim(V ) | W ⊂ T}. (6.4)

Theorem 6.2. Assume that V is SAF-accessible. Let T, U ∈ ΣSAf (V ). Assume further-
more that all primitive SAf -submodules of V , which are contained in T , are also contained

in U . Then T ⊂ Û .

Proof. We know by Corollary 5.10.(b) that T is the sum of all W ∈ SAτ (T ) with τ ≤ t :=
h(T ). Furthermore, it is clear by Definition 7.1, that every W ∈ SAτ (T ) is dominated
by the sum Xτ of all W ′ ∈ SAprim(T, V ) with h(W ′) ≤ τ . Since we assume that every

W ′ ∈ SAprim(T, V ) is contained in U , it follows that T ⊂
(∑

τ≤tXτ

)∧
⊂ Û . �

Theorem 6.3. Assume conversely that T ⊂ Û . Then all primitive SAf -submodules of V
which are contained in T are contained in U .

Proof. Let W ∈ SAτ,prim(T ) be given, i.e. W ∈ SAf(V ), h(W ) = τ , W ⊂ T , W primitive

in V . We have W ⊂ V 0
τ , W 6⊂ V̂τ−1, but W ⊂ Û . This is only possible if W ⊂ U (and so

W ∈ SAτ,prim(U)). �

Definition 6.4. The primitivity socle prsoc(T ) of a module T ∈ ΣSAf(V ) is the sum of
all primitive SAf -submodules W of V contained in T .

We state an immediate consequence of Theorems 6.2 and 6.3.

Corollary 6.5. Assume that V is SAF-accessible. For modules T, U ∈ ΣSAf (V ) the fol-
lowing are equivalent:

(1) T̂ ⊂ Û ,

(2) T ⊂ Û ,

(3) prsoc(T ) ⊂ prsoc(U).

Proof. (1) ⇔ (2): Obvious, cf. Proposition 1.8.
(2) ⇔ (3): Clear by Theorems 6.2 and 6.3. �

Proposition 6.6. Assume again that V is SAF-accessible. Let T ∈ ΣSAf (V ). The primi-
tivity socle prsoc(T ) is the smallest module U ∈ ΣSAf(V ) contained in T which dominates T .

Proof. Let T0 := prsoc(T ). By definition of the primitivity socle it is evident that prsoc(T0) =

T0, and thus prsoc(T ) = prsoc(T0). It follows by Corollary 6.5, that T̂ = T̂0, and so T0

dominates T . If U ∈ ΣSAf(V ) and U ⊂ T ⊂ Û , then Û ⊂ T̂ ⊂ Û , and so Û = T̂ . Again by
Corollary 6.5 we conclude that prsoc(U) = prsoc(T ) = T0. Thus certainly T0 ⊂ U . �



24 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

7. Generating SA-submodules by use of additive spines

Given an R-module V and a set S of generators of V we want to establish a new set T of
generators of V , which is “small” in some sense if S is “small”, and gives us sets of generators
of all SA-submodules W of V in a coherent way. Recall SA-adapted from Definition 3.6.
We will obtain a reasonable SA-adapted set of generators T from a given set of generators S

by employing the so-called additive spine M of a module (Definition 8.1) the semiring R
(Definition 7.2). In the special case that both M and S are finite it will turn out that also T
is finite, and so all SA-submodules W of V are generated by |T | elements.
We first define additive spines of R, state basic facts about them, and give first examples.

Notation 7.1. Given (nonempty) subsets A,B of R, we denote the set of products ab with
a ∈ A, b ∈ B by AB (or A · B). Similarly, if A ⊂ R, X ⊂ V then AX denotes the set of

products ax with a ∈ A, x ∈ X. Furthermore
∞∑

A and
∞∑

X denote the set of all finite sums
of elements of A in R and of X in V respectively. Admitting also the empty sum of elements

of A or X, we always have 0R ∈
∞∑

A, 0V ∈
∞∑

X. If necessary we write more precisely
∞∑
R

A

and
∞∑
V

X instead of
∞∑

A and
∞∑

X.

In this notation a set S ⊂ V generates the R-module V if V =
∞∑

RS.

Definition 7.2. Given a subset M of R,

a) We define the set

M̃ := {x ∈ R | ∃ y, z ∈ R : yx ∈ M, zyx = x},

which we call the halo of M in R.

b) If the halo M̃ generates R additively, i.e., R =
∞∑

M̃ , we call M an additive spine

of R.

We state some facts about halos which are immediate consequences of Definition 7.2.a.

Remarks 7.3.

i) M ⊂ M̃ for any set M ⊂ R.

ii) If M ⊂ N ⊂ R then M̃ ⊂ Ñ .

iii) If (Mi | i ∈ I) is a family of subsets of R, then
(⋃

i∈I

Mi

)∼

=
⋃

i∈I

M̃i.

iv) {0}∼ = {0} and (M \ {0})∼ = M̃.

Due to the last remark we may assume in any study of halos that 0 ∈ M or 0 6∈ M ,
whatever is more convenient.

Here are the perhaps most basic examples of halos deserving interest.

Example 7.4. Let M = {1R}. Then M̃ is the set of left invertible elements of R. Indeed,

if x ∈ M̃ , then there exists y ∈ R with yx = 1. Conversely, if x is left-invertible there exists

y ∈ R with yx = 1, and so xyx = x, which proves that x ∈ M̃ .
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Example 7.5. Let M = {e} with e an idempotent of R. If x ∈ M̃ , then there exist y, z ∈ R
with yx = e, ze = x. It follows that xe = x, yielding the von Neumann condition xyx = x.

Conversely, if yx = e and xyx = x, then clearly x ∈ M̃ . This proves that

{e}∼ = {x ∈ R | ∃ y ∈ R : yx = e, xyx = x}.

Let Id(R) denote the set of all idempotents of R. Starting from Example 7.5, we obtain
the following fact.

Proposition 7.6. If R is any semiring then

Id(R)∼ = {x ∈ R | ∃ y ∈ R : xyx = x}.

Proof. Id(R)∼ is the union of the sets {e}∼ with e an idempotent of R (cf. Remark 7.3.iii).
Thus it is clear from Example 2.6 that for every x ∈ Id(R)∼ there exists some y ∈ R with
xyx = x.
Conversely, if xyx = x, then yx ·yx = yx, and so e := yx is an idempotent of R. Moreover

xe = x, and so x ∈ {e}∼. �

We state an immediate consequence of this proposition.

Corollary 7.7. For any subset M of R we have

[M ∩ Id(R)]∼ = {x ∈ M̃ | ∃ y ∈ R : xyx = x},

and M̃ is the disjoint union of this set and [M \ Id(R)]∼.

The set [M ∩ Id(R)]∼ may be regarded as the “easy part” of the halo M̃ .

We are ready for a central result.

Theorem 7.8. Assume that S is a set of generators of a (left) R-module V , and M is an
additive spine of R. Then any SA-submodule W of V is generated by the set W ∩ (MS).

Proof. Since V =
∞∑

RS and R =
∞∑

M̃ , we have V =
∞∑

M̃S.
Let w ∈ W , w 6= 0, be given. Then

w =

n∑

i=1

xisi (A)

with n ∈ N, si ∈ S, xi ∈ M̃ . Since W is in SA(V ), it follows that

xisi ∈ W for 1 ≤ i ≤ n.

Now choose yi, zi ∈ R such that mi := yixi ∈ M and xi = zimi. Then

yi(xisi) = misi ∈ W ∩ (MS) (B)

and
zimisi = ziyixisi = xisi.

From (A) we obtain that

w =

n∑

i=1

zi(misi). (C)

We conclude from (B) and (C) that W ∩ (MS) generates W . �

Corollary 7.9. Assume that R has a finite additive spine M and V has a finite set of gen-
erators S. Then every SA-submodule W of V is finitely generated, more precisely, generated
by at most |M | · |S| elements (independent of the choice of W !).
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Theorem 7.10. Assume that V is a module over a semiring R which is additively generated
by the set of its left invertible elements. Then every set of generators S of V is SA-adapted.

Proof. We read off from Example 7.4 that {1R} is an additive spine of R. So by Theorem 7.8
every SA-submodule W of V is generated by W ∩ S = W ∩ (1RS). �

We take a look at additive spines of matrix semirings.

Example 7.11. Assume that C is a semiring which is additively generated by {1C},

C =
∞∑

{1C}.

In other terms, the unique homomorphism ϕ : N0 → C with ϕ(1) = 1C is surjective. Then
the semiring

R = Mn(C) =
n∑

i,j=1

Ceij

of (n× n)-matrices with entries in C, and eij the usual matrix units, has the additive spine

D := {e11, e22, . . . , enn}.

Indeed, for every j ∈ {1, . . . , n}

{ejj}
∼ ⊃ {eij | 1 ≤ i ≤ n},

since ejieij = ejj, eijejj = eij, and so D̃ =
⋃

j{ejj}
∼ contains the set E := {eij | 1 ≤ i, j ≤ n}

of all matrix units, which by the nature of C generates Mn(C) additively.

This example can be amplified to a theorem about additive spines in arbitrary matrix rings
Mn(A) by use of a general principle to “multiply” additive spines, which runs as follows:

Proposition 7.12. Assume that R1 and R2 are subsemirings of a semiring R, such that R

is additively generated by R1R2, i.e., R =
∞∑

R1R2. Assume furthermore that the elements

of R1 commute with those of R2. Assume finally that Mi is an additive spine of Ri. Let M̃i

denote the halo of Mi in Ri(i = 1, 2). Then M̃1M̃2 is contained in the halo (M1M2)
∼ of

M1M2 in R, and M1M2 is an additive spine of R.

Proof. Let xi ∈ M̃i (i = 1, 2) be given. We have elements yi, zi of Ri with mi := yixi ∈ Mi

and zimi = xi. Now

(y1y2)(x1x2) = (y1x1)(y2x2) = m1m2

and

(z1z2)(m1m2) = (z1m1)(z2m2) = x1x2.

This proves that x1x2 ∈ (M1M2)
∼. It follows that

( ∞∑
M̃1

)
·
( ∞∑

M̃2

)
= R1R2

and then that

R =
∞∑

R1R2 =
∞∑

M̃1M̃2. �
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Theorem 7.13. Assume that R is the semiring of (n×n)-matrices over any semiring A, so

R := Mn(A) =
n∑

i,j=1

Aeij

with the usual matrix units eij. Let N be an additive spine of A. Then the set M :=
n⋃

i=1

Neii,

consisting of the diagonal matrices with entries in N , is an additive spine of R.

Proof. Let C denote the smallest subsemiring of A, C = {n · 1A | n ∈ N}. We have seen
that R1 := Mn(C) has the additive spine D := {eii | 1 ≤ i ≤ n} (Example 7.11). Let
R2 := A · 1R. This is the subsemiring of R consisting of all matrices aI with a ∈ A, where
I is the identity matrix. It has the additive spine N · 1R2 . Now R =

∑
R1R2, and the

elements of R1 commute with those of R2. Thus, by Proposition 7.12, R has the additive

spine D · (N1R2) =
n⋃

i=1

Neii. �

Recalling Theorem 7.8 we obtain

Theorem 7.14. Assume that V is an Mn(A)-module, A any semiring, and S a system of
generators of V . Assume furthermore that N is an additive spine of A. Then any SA-
submodule W of Mn(A) is generated by the set

W ∩

( n⋃

i=1

Neii

)
=

n⋃

i=1

W ∩ (Neii).

If N is finite then W can be generated by at most n · |N | elements.

The proof of Theorem 2.14 can be seen in a much wider context, as we explain now.

Definition 7.15. Let S = (S, ·) be a monoid, in multiplicative notation. We call a subset T
of S a spine of S (= monoid spine), if for any s ∈ S there exist s1, s2 ∈ S such that
t := s1s ∈ T and s2t = s.

Given any semiring A and monoid S = (S, ·) we denote, as common, the monoid-
semiring of S over A by A[S].

In the case that the monoid S is without zero, i.e., S does not contain an absorbing
element 0, (0 · S = S · 0 = 0 for all s ∈ S), the elements x of R := A[S] are the formal sums

x =
∑

s∈S

ass,

with coefficients as ∈ A uniquely determined by x, only finitely many non-zero. The mul-
tiplication is determined by the rule (as) · (bt) = (ab)(st) for a, b ∈ A, s, t ∈ S. Identifying
a = a · 1S, s = 1A · s, we regard A as a subsemiring of R and S as a submonoid of (R, ·).
If the monoid S has a zero 0 = 0S, we take for R = A[S] the free A-module with base

S \ {0} and multiplication rule (as) · (bt) = (ab)(st) if st 6= 0S, (as)(bt) = 0 otherwise. Now
the nonzero elements of R = A[S] are formal sums

∑
s 6=0

ass. We identify again a = a · 1S,

s = 1A · s for s ∈ S \ {0}, and now also 0S = 0A. Then again A becomes a subsemiring of R

and S a submonoid of (R, ·). We have R =
∞∑

AS in both cases.

Example 7.16. The matrix semiring Mn(A) coincides with A[S], where S is the monoid
{eij | 1 ≤ i, j ≤ n}∪ {0} with multiplication rule eijekl = δjkeil. Note that S has the monoid
spine {e11, . . . , enn} ∪ {0}.
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Theorem 7.17. Assume that S is a multiplicative monoid (with zero or without zero) and T
is a spine of S. Assume furthermore that A is a semiring and N is an additive spine of A.
Then N · T is an additive spine of A[S].

Proof. Let R := A[S] and R1 := C[S] ⊂ R, with C the image of the (unique) homomorphism

N0 → A. It is obvious that R1 =
∞∑

S and that S is contained in the halo T̃ of T in R1. Thus

T is a spine of R1. {In fact it can be verified that T̃ = S̃ = S.} Let R2 := A ⊂ R. Then

R =
∞∑

R1 · R2 and the elements of R1 commute with those of R2. The assertion follows
from Proposition 7.12. �

8. Halos and additive spines in R-modules

Halos and additive spines can be defined and studied on any R-module instead of the
semiring R itself. Although at present perhaps of limited practical value, this will make the
theory of generators of SA-submodules more transparent.

Definition 8.1. Assume that S is a subset of V .

a) The halo S̃ of S in V is the set of all v ∈ V such that there exist λ, µ ∈ R with
λv ∈ S and µλv = v.

b) S is called an additive spine of the R-module V if V is additively generated by S̃,

V =
∞∑

S̃.

Thus the additive spines on RR, i.e., of R considered as left R-module, are the same objects
as the additive spines on R as defined in §2.

Example 8.2. If S is a set of generators of the R-module V and M is an additive spine
of R, then we know by Theorem 7.8 that MS is an additive spine of V .

Theorem 7.8 generalizes as follows:

Theorem 8.3. Assume that S is an additive spine of an R-module V . Then every SA-
submodule W of V is generated by W ∩ S, and moreover W ∩ S is an additive spine of W .

Proof. a) We first verify that V itself is generated by S. Since V is additively generated

by S̃, for given nonzero v ∈ V we have

v =

n∑

i=1

vi, (A)

with n ∈ N, vi ∈ S̃. There exist λi, µi ∈ R such that

si := λivi ∈ S, (B)

vi = µisi, (C)

and so by (A)

v =

n∑

i=1

µisi,

and we are done.

b) If now W is an SA-submodule of V , and the above element v lies in W , then in (A)
all summands vi are in W , and so the si from (7) are in W ∩ S. We conclude from (B)
and (C) that all vi are in the halo (W ∩ S)∼ of W ∩ S in W , and we infer from (A) that W
is additively generated by (W ∩ S)∼, i.e., W ∩ S is an additive spine of W . As proved in a)
the set W ∩ S generates the R-module W . �
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We write down a chain of propositions which turn out to be useful in working with halos
and additive spines. For clarity we sometimes denote the halo of a set S in an V more
elaborately by halV (S) instead of S̃.

Proposition 8.4. If S is a subset of an R-module V and W a submodule of V , then

W ∩ halV (S) = halW (W ∩ S) = halV (W ∩ S).

Proof. Let v ∈ halV (S) be given. We choose λ, µ ∈ R with λv = s ∈ S and µs = v. If now
v ∈ W then λv = s ∈ W ∩ S, and so v ∈ halW (W ∩ S). This proves that

W ∩ halV (S) ⊂ halW (W ∩ S). (A)

Trivially

halW (W ∩ S) ⊂ halV (W ∩ S). (B)

If v ∈ halV (W ∩ S), then there exist λ, µ ∈ R with λv = s ∈ W ∩ S and µs = v. It follows
that v ∈ W ∩ halV (S). This proves

halV (W ∩ S) ⊂ W ∩ halV (S). (C)

(A)–(C) together imply the assertion of the proposition. �

In case S ⊂ W the proposition reads as follows:

Corollary 8.5. Let S ⊂ V . Then the halo of S in any submodule W ⊃ S of V coincides
with the halo of S in V .

Thus in practice the notation halV (S) instead of S̃ is rarely needed.

Proposition 8.6. Let (Vi | i ∈ I) be a family of submodules of the R-module V and assume
that for every i ∈ I there is given a set Si ⊂ Vi.

a) Then
⋃

i∈I

halVi
(Si) = halV

(⋃

i∈I

Si

)
.

b) If
∑
i∈I

Vi = V and each Si is an additive spine of Vi, then
⋃
i∈I

Si is an additive spine

of V .

Proof. Let S :=
⋃
i∈I

Si.

a): We have halV (S) =
⋃

i∈I halV (Si) in complete analogy to Remark 7.3.iii. Furthermore
halV (Si) = halVi

(Si) by Corollary 8.5.

b): Let S̃i := halVi
(Si). Then

⋃
S̃i = S̃,

∞∑
S̃i = Vi, and so

∞∑
S̃ =

∑

i∈I

( ∞∑
S̃i

)
=

∑

i∈I

Vi = V.
�

We now have a good hold on all additive spines of a free R-module as follows:

Proposition 8.7. Assume that V is a free R-module with base (vi | i ∈ I). Then every
additive spine S of V has the shape

S =
⋃

i∈I

Mivi

with every Mi an additive spine of R, as defined in §7.
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Proof. We have V =
⊕
i∈I

Vi with Vi = Rvi ∼= RR. The claim follows from Proposition 8.6. �

Proposition 8.8 (Functoriality of halos and additive spines). Let ϕ : V → V ′ be an R-linear
map between R-modules.

a) If S is a subset of V then

ϕ(S̃) ⊂ ϕ(S)∼.

b) If S is an additive spine of V , then the R-module ϕ(V ) is additively generated by

ϕ(S̃), and so ϕ(S) is an additive spine of ϕ(V ).

Proof. a): Let x ∈ S̃. We have λ, µ ∈ R with λx = s ∈ S, µs = x. It follows that
λϕ(x) = ϕ(s), µϕ(s) = ϕ(x), whence ϕ(x) ∈ ϕ(S)∼.

b): By Corollary 8.5 we may replace V by ϕ(V ), and so assume that ϕ is surjective. We

have
∞∑

S̃ = V . Applying ϕ we obtain
∞∑

ϕ(S̃) = ϕ(V ).

It follows by a) that
∞∑

ϕ(S)∼ = ϕ(V ). �

Corollary 8.9. Assume that R, T are semirings and V is an (R, T )-bimodule, i.e., V is a
left R-module, a right T -module, and

∀λ ∈ R, µ ∈ T, v ∈ V : (λv)µ = λ(vµ).

Let S be a subset of V . As before let S̃ denote the halo of S in RV , (= V as a left R-module).
Then, for any t ∈ T

S̃t ⊂ (St)∼.

If S is an additive spine of V then S̃t generates the left R-module V t additively, and so St
is an additive spine of V t.

Proof. Apply Proposition 8.8 to the endomorphism v 7→ vt of RV . �

Corollary 8.10. If again V is an (R, T )-bimodule and t is a unit of T , then S̃t = (St)∼,
and S is an additive spine of V iff St is an additive spine of V .

Proof. Let u := t−1. Then by Corollary 8.9 (S̃t)u ⊂ (St)∼u ⊂ (Stu)∼ = S̃. Multiplying

by t, we obtain S̃t ⊂ (St)∼ ⊂ S̃t, whence S̃t = (St)∼, and then
∞∑

(St)∼ =

( ∞∑
S̃

)
t.

�

Example 8.11. R is an (R,R)-bimodule in the obvious way. Thus, if M is an additive
spine of R (as defined already in §7), and if u is a unit of R, then Mu is again an additive
spine of R.

Example 8.12. Assume that C is a semiring which is a homomorphic image of N0, and
R := Mn(C). We have seen in Example 2.12 that {e11, . . . , enn} is an additive spine of R.

Let σ ∈ Γn. Then u :=
n∑

i=1

ei,σ(i)
is a unit of R, namely u is the permutation matrix of σ−1.

We have eiiu = ei,σ(i), and conclude that {e1,σ(1), . . . , en,σ(n)} is an additive spine of Mn(C).

We can generalize Proposition 7.12 as follows:
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Proposition 8.13. Assume that R1, R2 are subsemirings of a semiring R with R =
∞∑

R1R2,
and that V1, V2 are left modules over R1 and R2 respectively. Assume furthermore that there
is given a composition V1 × V2

•
−→ V such that

(λ1λ2)(v1 • v2) = (λ1v1) • (λ2v2)

for any λi ∈ R, vi ∈ Vi (i = 1, 2). Assume finally that V =
∞∑

V1 • V2. Then, given subsets

Si ⊂ Vi with halos S̃i in the Ri-module Vi (i = 1, 2), the following holds.

a) S̃1 • S̃2 is contained in the halo (S1 • S2)
∼ of S1 • S2 in V .

b) If Si is an additive spine of Vi (i = 1, 2) then

V =

∞∑
S̃1 • S̃2

and S1 • S2 is an additive spine of V .

Proof. Let vi ∈ S̃i (i = 1, 2). We have λi, µi ∈ Ri with λivi = si ∈ Si, µisi = vi. Now

(λ1λ2)(v1 • v2) = (λ1v1) • (λ2v2) = s1 • s2

and (µ1µ2)(s1 • s2) = (µ1s1) • (µ2s2) = v1 • v2. This proves that S̃1 • S̃2 ⊂ (S1 • S2)
∼. If now

∞∑
S̃i = Vi (i = 1, 2), then

∞∑
(S̃1 • S̃2) ⊃

( ∞∑
S̃1

)
•

( ∞∑
S̃2

)
= V1 • V2,

and so
∞∑
(S̃1 • S̃2) ⊃

∞∑
V1 •V2 = V , whence

∞∑
S̃1 • S̃2 = V . A fortiori

∞∑
(S1 •S2)

∼ = V . �

Note that Proposition 7.12 is indeed a special case of this proposition: Given an R-
module V , take R1 = R2 = R, V1 = R, V2 = V and the scalar product R× V → V .

9. The posets SA(V ), ΣSA(V ) and Σf SAf in good cases

Assume now that R has a finite additive spine M consisting of m := |M | elements. We
have seen in §7 that, when S is a set of generators of V , then every W ∈ SA(V ) is generated
by the set W ∩ (MS). Thus, if s := |S| is finite, we see that the lattice SA(V ) is finite,
consisting of at most 2m|S| elements. More generally we have the following fact.

Theorem 9.1. Assume that V0 is a submodule of an R-module V and S is a subset of V ,
such that V is generated over V0 by S, i.e.,

V = V0 +

∞∑
RS. (9.1)

Let W0 ∈ SA(V ) be given with W0 ⊂ V0, and consider the set

SA(V ;W0, V0) = {W ∈ SA(V ) | W ∩ V0 = W0}. (9.2)

Then if s := |S| is finite, this set SA(V ;W0, V0) consists of at most 2ms elements. Further-
more, any chain W0 $ W1 $ · · · $ Wr in SA(V ;W0, V0) has length r ≤ ms.

Proof. Let U denote the submodule of V generated by S. We have V = V0 + U . If W ∈
SA(V ;W0, V0) then by (1.1)

W = W ∩ V0 +W ∩ U = W0 +W ∩ U, (9.3)
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and, of course, W ∩ U ∈ SA(U). Since | SA(U)| ≤ 2ms, as stated above, we infer that
| SA(V ;W0, V0)| ≤ 2ms. Also, if W0 $ W1 $ · · · $ Wr is a chain in SA(V ;W0, V0), we
conclude from (9.3) for Ui := Wi ∩ U that

U0 $ U1 $ · · · $ Ur.

Every Ui is generated by the set Ui ∩ (MS) and so

U0 ∩ (MS) $ U1 ∩ (MS) $ · · · $ Ur ∩ (MS).

This implies that r ≤ |MS| = ms. �

We return to an arbitrary semiring R.

Theorem 9.2. Assume that T is an additive spine of the R-module V (cf. Def. 8.1).

a) Then any U ∈ ΣSA(V ) is generated by the set U ∩ T .

b) If T is finite, |T | = t, then |ΣSA(V )| ≤ 2t, and any chain

U0 $ U1 $ · · · $ Ur

in ΣSA(V ) has length r ≤ t.

Proof. a): Write U =
∑

i∈I Wi with Wi ∈ SA(V ). We know by Theorem 8.3 that every Wi

is generated by Wi ∩ S. Thus U is generated by the set

⋃

i∈I

(Wi ∩ S) =

(⋃

i∈I

Wi

)
∩ S.

A fortiori U is generated by U ∩ S.

b): Every U ∈ ΣSA(V ) is generated by the set U ∩ T ⊂ T . We have at most 2t possibilities
for this set, and so |ΣSA(V )| ≤ 2t. Furthermore, if U0 $ · · · $ Ur is a chain in ΣSA(V ),
then

U0 ∩ T $ U1 ∩ T $ · · · $ Ur ∩ T,

since each Ui generated by Ui ∩ T , and so r ≤ t. �

By a variation of our previous arguments we obtain

Theorem 9.3. Assume that R has a finite additive spineM , furthermore that U ∈ Σf SAf(V ).
Let S be a finite set of generators of U . Then every W ∈ SAf(U) is generated by the finite
set W ∩ (MS) and every chain

W % W1 % W2 % . . . % Wr

in SA(U), hence in SAf (U), has length r ≤ |M | · |S|. A fortiori this holds if W and all Wi

are in SAf (V ).

Proof. Every W ∈ SAf(U) is generated by the finite set W ∩ (MS), cf. Theorem 7.8.
Furthermore by the same theorem every Wi is generated by the subset Wi ∩ (MS) of
W ∩ (MS). It follows that

W ∩ (MS) % W1 ∩ (MS) % . . . % Wr ∩ (MS)

and so r ≤ |W ∩ (MS)| ≤ |M | · |S|. It is obvious that every SA-submodule of V contained
in U is SA in U . �

Example 9.4. We read off from Theorem 9.3 that, if R has a finite additive spine, then
every module U ∈ Σf SAf(V ) is SAF-accessible.
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Our final result in this section refers to modules with additive spines which are not nec-
essarily finite.

Theorem 9.5. Assume that T ⊂ V is an additive spine of the R-module V , and U ∈ ΣSA(V ).

a) Then U is generated by the set U ∩ T .

b) If U is an SAf -sum in V , and (Wi | i ∈ I) is a family of finitely generated SAf -
submodules of V with U =

∑
i∈I

Wi, then every Wi is generated by a finite subset Ti of

Wi ∩ T , and so U is generated by the subset
⋃
i∈I

Ti = T ′ of T . This subset T ′ is an

additive spine of U .

c) If U ∈ Σf SAf(V ) then U is generated by a finite subset of U ∩ T , and this is an
additive spine of U .

Proof. We choose a family (Wi | i ∈ I) in SAf(V ) with U =
∑
i∈I

Wi.

a): Done before (Theorem 9.2).

b): We assume now that all Wi are finitely generated. Every Wi is generated by Wi ∩ T
(Theorem 8.3). It follows that Wi is generated by a finite subset Ti of Wi ∩ T . Indeed,
given generators s1, . . . , sr of Wi for i fixed, write every sj as a linear combination of a finite

subset Tij of Wi ∩ T . Then Ti :=
r⋃

j=1

Tij does it. It follows by Theorem 8.3 that Ti is an

additive spine of Wi. It now is clear that T ′ :=
⋃
i∈I

Ti generates U =
∑
i∈I

Wi, and it follows by

Proposition 8.6 that T ′ is an additive spine of U .

c): Now evident, since the index set I can be assumed to be finite, and so T ′ =
⋃
i∈I

Ti is a

finite additive spine of U . �
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