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Abstract 23 

Microbial oxidation of ammonia controls the rates of nitrification in the majority of 24 

soils. Both nitrification rate and the composition of communities of ammonia oxidising archaea 25 

(AOA) and ammonia oxidising bacteria (AOB) are influenced by drought, with evidence that 26 

AOA are more sensitive to periods of drought than AOB. This has been explained by greater 27 

sensitivity of AOA to ammonia concentration, which will increase in soil solution during 28 

drought, but an alternative, previously unexplored explanation, is greater sensitivity of AOA to 29 

matric and/or osmotic stress. A soil microcosm experiment was designed to distinguish these 30 

different explanations in which AOA and AOB abundances (amoA abundance) and nitrification 31 

rate were measured over 28 days in nine treatments corresponding to all combinations of three 32 

soil matric potentials and three initial ammonia concentrations. Comparison of amoA 33 

abundance dynamics suggested that AOA were more susceptible to reduced matric potential 34 

than AOB, irrespective of soil ammonia concentration. The greater sensitivity of soil AOA to 35 

osmotic stress was also tested in 10-day cultures of representative strains of AOA and AOB in 36 

liquid medium containing different concentrations of NaCl and sorbitol as osmo-inducer. AOA 37 

were significantly more sensitive to osmotic stress than AOB. These results provide evidence 38 

for greater sensitivity of AOA than AOB to both components of water stress, matric and 39 

osmotic potential, representing an additional niche differentiation between these two essential 40 

groups of ammonia oxidisers. 41 

  42 
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1. Introduction 43 

The frequency of drought events, including those in previously temperate regions, is 44 

predicted to increase dramatically during the next few decades (Kovats et al., 2014). Reduction 45 

in soil water content during drought decreases the mobility and availability of soluble and 46 

diffusible substrates and products, increases diffusion of gaseous compounds, including 47 

oxygen, and increases water stress. Water stress can arise from both matric stress of cells, for 48 

example through increased surface tension caused by desiccation, and osmotic stress of cells 49 

in the soil solution, through reduced water activity (Potts, 1994). Sensitivity to disturbances, 50 

including water stress, differs between microbial groups with different physiological 51 

characteristics and these differences, coupled with changes in the distribution of essential 52 

substrates, influence the abundance and activity of soil microbial functional groups (Schimel 53 

et al., 2007). Understanding the differential response of microbial groups to drought, especially 54 

functional groups involved in crucial biogeochemical cycles, is critical for prediction and 55 

mitigation of the impacts of climate change.  56 

Both ammonia oxidising archaea (AOA) and bacteria (AOB) perform the first step in 57 

soil nitrification, the oxidation of ammonia (NH3), via nitrite (NO2-), to nitrate (NO3-) (Prosser, 58 

2011; Nicol et al., 2011). Nitrification significantly reduces nitrogen fertiliser use efficiency, 59 

causes significant pollution of waters through NO3- leaching (Puckett et al., 1999), and provides 60 

nitrate for denitrification and resultant nitrous and nitric oxide production (Butterbach-Bahl et 61 

al., 2013). Drought may alter NH3 oxidiser (AO) activity through effects of water stress on 62 

archaeal and bacterial cells and modification of both the concentration and availability of NH3 63 

and ammonium (NH4+), its protonated form, which is largely dominant in acidic to neutral pH 64 

soils. Drying of soil pores through evapotranspiration reduces the number of anaerobic 65 

microsites and increases bulk NH4+ concentration (due to a reduced volume of water), which 66 

may favour NH3 oxidation. However, soil drying also reduces the thickness of water films on 67 

the surface of soil particles, thereby decreasing the movement and availability of NH4+ and 68 
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NH3. Drought has been shown to decrease general nitrification activity in soil (Stark and 69 

Firestone, 1995), but may have differential effects on members of the AO community. For 70 

example, there is evidence that AOA are more sensitive to drought than AOB and less resilient 71 

following rewetting of a non-drought acclimated soil (Thion and Prosser, 2014) and this was 72 

proposed to result from increases in bulk NH4+ concentration. There is indeed evidence of niche 73 

differentiation between AO associated with concentration and supply of NH4+ and observations 74 

that AOB may be favoured in heavily fertilised soils (Di et al., 2010; Verhamme et al., 2011), 75 

while AOA predominate in soils receiving low rates of NH4+ supply, e.g. through 76 

mineralisation of organic nitrogen (Levičnik-Höfferle et al., 2012; Stopnišek et al., 2010). 77 

These preferences have been suggested to result from greater ammonia affinity and greater 78 

sensitivity to high NH3 concentration in AOA, although recent studies challenge these 79 

proposals (Hink et al., 2017a; Kits et al., 2017; Lehtovirta-Morley et al., 2016). Reduction in 80 

NH4+ transport during drought may therefore lead to high localised NH4+ concentration, 81 

potentially benefiting AOB. In support of this, Gleeson et al. (2010) observed an increase in 82 

AOB, but not AOA abundance as soil water-filled pore space (WFPS) decreased. In contrast, 83 

Vasileiadis et al. (2012) reported a reduction in the abundance of transcripts of AOB amoA 84 

(encoding ammonia monooxygenase, catalysing NH3 oxidation), but not those of AOA, when 85 

soil moisture content decreased from 87 to 50% water holding capacity (WHC). Differential 86 

effects of drought on AOA and AOB may also reflect differences in physiological response to 87 

water stress. With the exception of extreme halophiles, both archaea and bacteria respond to 88 

osmotic stress by accumulating compatible solutes, protecting cells against osmotic stress, 89 

although the chemical nature of those compounds differs (Roeßler and Müller, 2001). Thus, 90 

despite domain-level differences in these compounds (Roeßler and Müller, 2001), membrane 91 

lipid composition (Elling et al., 2017) and transcriptional machinery, there is no evidence of 92 

general differences in sensitivity of AOA and AOB to water stress, although no comparative 93 

physiological studies have yet been performed.  94 
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AOA and AOB differ in their environmental impact through different ecophysiological 95 

characteristics, including cell specific rates of ammonia oxidation (Prosser and Nicol, 2012) 96 

and nitrous oxide emissions from soil (Hink et al., 2017b, 2018). Their response to drought 97 

may be important in anticipating the effects of increased frequency of drought events on AO 98 

community structure and activity and on ecosystem functions relying on nitrification. The aim 99 

of this study was to assess the different effects of water stress and NH4+ concentration on AO 100 

growth and activity, hypothesising that AOB are less sensitive to drought than AOA, because 101 

of greater preference for high NH4+ concentration during drought, rather than because of 102 

different response to water stress. To test this hypothesis, nitrification activity and changes in 103 

AOA and AOB abundances were determined in soil microcosms in which NH4+ concentration 104 

and matric potential were manipulated. To explore AO differential sensitivity to water stress 105 

further, the effect of osmotic stress on growth of cultivated AOA and AOB was assessed in 106 

laboratory culture.  107 

2. Materials and methods 108 

2.1. Microcosm construction and incubation 109 

Microcosms were constructed using a non-drought-acclimatised agricultural soil (0 – 110 

15 cm depth, pH 6.5) collected from field plots at SRUC, Craibstone, Scotland (grid reference 111 

NJ872104). Details of the sampling site and other soil characteristics are described by Kemp 112 

et al. (1992). Soil was air-dried at 25oC for 4 days, sieved (3.35-mm mesh) and stored at 4oC 113 

for 4 weeks. Soil pH and moisture content were determined as described by Nicol et al. (2005) 114 

and initial soil moisture content decreased from 27.7% (field moisture content) to 10% after 115 

air-drying. A soil water retention curve, assessing the relationship between soil matric potential 116 

and soil moisture, was determined on independent soil samples, measuring matric potential 117 

using a WP4C water potentiometer (Decagon, Pullman, UK) (data not shown). Soil 118 

microcosms were established in sterile 100-ml Duran glass bottles containing 10 g equivalent 119 

dry soil and sufficient sterile distilled water to achieve an initial moisture content of 30% (g 120 
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water g-1 dry soil), corresponding to a matric potential of -0.019 MPa (equivalent to field 121 

conditions). Microcosms were pre-treated in two consecutive 9-day incubation cycles to 122 

oxidise all ammonia released through mineralisation after wetting the soil. In each cycle, 123 

microcosms were incubated in the dark at 30 °C and 30% moisture content for 5 days, 124 

maintaining aerobic conditions by removing plastic screw caps for 5 - 10 min every third day 125 

and replacing water lost through evaporation by addition of sterile distilled water. Screw caps 126 

were then replaced with sterile cotton wool plugs and microcosms were incubated for a further 127 

4-day period, during which moisture content decreased to ~12%.  128 

After pre-treatment, nine treatments were applied in a full factorial design consisting of 129 

all combinations of three NH4+-N concentrations and three matric potentials. Moisture content 130 

was adjusted to 16.5, 20 or 30% with sterile distilled water to achieve low (-0.080 MPa), 131 

medium (-0.051 MPa) and high (-0.019 MPa) matric potentials, respectively. (Matric potential 132 

represents the negative pressure applied to remove water from soil. Increasingly negative 133 

values of matric potential (lower values) therefore reflect increasing matric stress). Microcosms 134 

were also amended with ammonium sulphate ((NH4)2SO4) solution to give soil solution 135 

concentrations of 0.6, 6 and 60 µg NH4+-N g-1 soil, termed low, medium and high NH4+-N, 136 

respectively. Sealed microcosms were incubated in the dark at 30 °C for 28 days, maintaining 137 

aerobic conditions as above. Triplicate microcosms for each treatment were destructively 138 

sampled after incubation for 0, 7, 14, 21 and 28 days. For each microcosm, 2 g soil was stored 139 

at -80 °C for molecular analysis, the remainder being stored at -20 °C for analysis of pH, NH4+ 140 

and NOx (NO3- + NO2-) concentrations.  141 

2.2. Growth of ammonia oxidisers in liquid medium 142 

The effect of osmotic potential on cultivated AOA and AOB was assessed during batch 143 

growth in liquid medium containing different concentrations of NaCl or sorbitol and inoculated 144 

with a pure culture of either the AOA, Candidatus Nitrosotalea sinensis Nd2 or Candidatus 145 
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Nitrosocosmicus franklandus C13, or the AOB, Nitrosomonas europaea (ATCC 19718) and 146 

Nitrosospira multiformis (ATCC 25196). Ca. N. sinensis was grown in freshwater medium 147 

(FWM) at pH 5.0 as described by Lehtovirta-Morley et al. (2011) buffered by adding 2.5 mM 148 

2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 5.35) and 4 mM NaHCO3. Ca. N. 149 

franklandus was grown in FWM adjusted to pH 7.5 as described by Lehtovirta-Morley et al. 150 

(2016). N. europaea and N. multiformis were cultured in Skinner and Walker medium (Skinner 151 

and Walker, 1961) adjusted to pH 7.9. NaCl, routinely used to investigate osmotic stress in 152 

heterotrophic bacteria (e.g. Humphrey, 2004), was first chosen as a model osmo-inducer. 153 

Sorbitol, a non-toxic and non-electrolyte osmolyte (Suga et al., 2003), was then used to 154 

distinguish effects of osmotic stress and NaCl, as Na+ may have cytotoxic effects on microbial 155 

cells (Lanyi, 1979). Growth media were adjusted to seven osmotic potentials (ψ) by addition 156 

of NaCl or sorbitol at concentrations of 0 (control), 0.05, 0.1, 0.2, 0.25, 0.3 and 0.4 M. The 157 

relationship between osmotic potential and NaCl and sorbitol concentrations used is shown in 158 

Table S1. Triplicate batch cultures were grown in 100-ml Duran bottles containing 50 ml FWM 159 

and inoculated with 2% (v v-1) of exponentially growing cells of each AOA and AOB. AOA 160 

and AOB cultures were incubated in the dark without shaking at 35oC and 28oC, respectively, 161 

and growth medium (100 µl) was sampled daily during incubation for 10 days for colorimetric 162 

assay of nitrite (NO2-) concentration. Potential contamination by heterotrophs was assessed by 163 

plating on 5% nutrient agar medium, incubated for 10 days at the same temperature as the 164 

liquid cultures. 165 

2.3. Chemical analysis 166 

NH4+ and NOx (NO3- and NO2-) concentrations in soil were determined by colorimetric 167 

analysis. NH4+-N and NOx-N were extracted from 2 g soil with 10 ml 1 M KCl and centrifuged 168 

at 3,000 rpm for 15 minutes. Concentrations in supernatants were measured as described by 169 

Catão et al. (2016). NO2- concentration in soil extracts was negligible and NOx-N concentration 170 

is referred to as NO3- concentration. NO2--N concentration was assessed in liquid cultures as 171 
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described by Lehtovirta-Morley et al. (2011) and maximum specific growth rate in batch 172 

culture was estimated as the gradient of independent semi-logarithmic plots of NO2- 173 

concentration vs. time during exponential growth, as described by Powell and Prosser (1992).  174 

2.4. Quantification of amoA genes  175 

DNA was extracted from 0.5 g of soil according to Griffiths et al. (2000), with 176 

modifications (Nicol et al., 2005), and DNA concentration and purity were measured using a 177 

Nanodrop ND-2000 UV-Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE). 178 

Abundances of AOA and AOB in soil microcosms were estimated by quantitative PCR (qPCR) 179 

amplification of amoA genes using the primers CrenamoA23F/CrenamoA616R (Tourna et al., 180 

2008) and amoA-1F/amoA-2R (Rotthauwe et al., 1997), respectively, with 5 µl of 2 ng µl-1 181 

DNA template in 20 µl final volume reactions. AOA and AOB amoA standards were prepared 182 

using Ca. N. sinensis and N. multiformis, respectively, as described in Thion and Prosser 183 

(2014). qPCR assays were performed on a Master cycler® realplex2 thermocycler (Eppendorf, 184 

Germany) with QuantiFastTM qPCR master mix (Qiagen, Crawley, UK) as described in Thion 185 

and Prosser (2014). Amplicon size was verified on a 1% agarose gel electrophoresis and qPCR 186 

efficiencies for amplification of AOA and AOB amoA genes were 88 - 95% and 90 - 92%, 187 

respectively, with r2 values >0.99. 188 

2.5. Statistical analysis  189 

All statistical analyses were computed using the program R 3.2.2 (R Development Core 190 

Team, 2015), using agricolae and nlstools packages. AOA and AOB abundances were 191 

normalised by log10 transformation and mean z-score-transformed. For the soil microcosm 192 

experiment, the effects of matric potential, NH4+ amendment and time, and their interactions, 193 

on soil pH, NH4+-N and NO3--N concentrations and AOA and AOB amoA abundances during 194 

incubation of soil microcosms were analysed using three-way ANOVAs. (All independent 195 

variables were categorical and destructive sampling allowed analysis of time as an independent 196 
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fixed factor.) Generalised linear models were used to explore further the correlations between 197 

AOA and AOB abundances, as dependent variables, and matric potential and time as 198 

categorical independent variables and measured soil NH4+-N concentrations and pH as 199 

continuous independent variables. Effects of interactions between time, matric potential and 200 

NH4+-N were also tested, as they were physiologically meaningful. For the pure culture 201 

experiment, the effects of the osmo-inducer nature (sorbitol vs. NaCl) and osmotic potential on 202 

each strain growth rate was assessed by two-way ANOVA after log10 transformation of growth 203 

rate data. Tukey HSD multiple post-hoc tests were used to identify differences among the 204 

treatment means detected by ANOVAs. All models and results (including effect size) are 205 

shown in Supplementary Information.  206 

3. Results 207 

3.1. Influence of matric potential and NH4+ amendment on AOA and AOB abundance and 208 

nitrification activity  209 

Pre-treatment of soil microcosms successfully reduced soil inorganic NH4+, enabling 210 

measurement of nitrification, and led to a small decrease in pH to 6.1 ± 0.11 immediately prior 211 

to application of NH4+ and matric potential treatments (Fig. S1). Ammonia oxidiser activity 212 

during incubation was assessed through changes in NH4+ and NO3- concentrations. In some 213 

cases, NO3- concentration increased linearly, enabling calculation of ammonia oxidation rate, 214 

but this was not possible for all treatments and ammonia oxidation activities were therefore 215 

compared by ANOVA of NH4+ and NO3- concentrations during incubation for 28 days.  216 

Overall, initial NH4+, matric potential and their interaction significantly influenced 217 

nitrification (Fig. 1). Ammonia oxidising activity was greatest at high matric potential (-0.019 218 

MPa) (i.e. low water stress), where oxidation of high initial NH4+ (60 µg NH4+-N g-1) was 219 

almost complete by day 28 (Fig. 1A), and NH4+ concentration was negligible (£1 µM) by day 220 

7 for both low (0.6 µg NH4+-N g-1) and medium (6 µg NH4+-N g-1) initial NH4+ concentrations 221 
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(Figs. 1B, C). Final NO3- concentration increased with increasing initial NH4+ concentration 222 

(Fig. 1D - F) from an initial concentration of ~11 µg NO3--N g-1 and changes in NH4+ and NO3- 223 

concentrations were stoichiometrically equivalent. However, final NO3- concentration was 224 

always greater than the concentration of added NH4+, due to additional supply through 225 

mineralisation of native soil organic nitrogen, equivalent, respectively, to 2.5, 0.98 and 0.93 µg 226 

NH4+-N g-1 at high, medium and low matric potentials after incubation for 28 days. Ammonia 227 

oxidation activity was lower at medium and low matric potentials (Fig. 1B and C) than at high 228 

matric potential (Fig. 1A). At medium matric potential, final NO3- concentration was greatest 229 

at high initial NH4+ concentration but did not differ significantly between medium and low 230 

initial NH4+ (Fig. 1E). At low matric potential (highest water stress), there was little ammonia 231 

oxidation activity (Fig. 1C) and NO3- production was low and not influenced by initial NH4+ 232 

concentration (Fig. 1F) As expected, ammonia oxidation led to a decrease in soil pH, which 233 

was statistically significant only in the soil with the highest matric potential and initial 234 

ammonium concentration (Fig. S1).  235 

AOA amoA abundance was higher than that of AOB amoA throughout incubation of 236 

all microcosms, irrespective of matric potential and initial NH4+ concentration (Fig. 2). Three-237 

way ANOVAs and post-hoc Tukey tests identified different responses of AOA and AOB to 238 

microcosm treatments. Moreover, the effects of measured soil NH4+-N concentration and pH 239 

were further explored using generalised linear models (Supplementary Information). Both 240 

AOA and AOB abundances varied significantly with pH (p=0.035) and decreased with matric 241 

potential (p<0.013), but AOA abundance was not significantly correlated with soil NH4+ 242 

concentration (p=0.841), while temporal changes in AOB abundance correlated strongly with 243 

NH4+ concentration (p=0.009). While AOA increased in abundance significantly at high matric 244 

potential, there was no significant AOA growth, and even a significant decrease in AOA amoA 245 

abundance, at medium and low matric potentials (Fig. 2A - C, p<10-7). Overall, both high 246 

matric potential (p=0.001) (low water stress) and high NH4+ concentration (p=0.014) increased 247 
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AOB abundance after incubation for 28 days (Fig. 2D - F). AOB did not grow at medium and 248 

low matric potentials but abundance increased significantly following incubation at high matric 249 

potential with high initial NH4+ concentration (p=0.039).  250 

At the end of the 28-day incubation period, the AOA:AOB amoA ratio was significantly 251 

lower (p=0.007) at low (4.30±0.27) and medium (4.46±0.38) matric potentials, where water 252 

stress was greatest, than at high matric potential (7.5±1.2). This ratio was also significantly 253 

lower at high NH4+ (3.80±0.19) than at medium (6.60±1.21) and low (5.91±1.93) NH4+ 254 

concentrations (p=0.008). 255 

3.2. Influence of osmotic potential on growth of AOA and AOB in liquid batch culture 256 

The influence of osmotic potential on AO growth was investigated by measuring the 257 

effect of two osmo-inducers, NaCl and sorbitol, on growth of two AOA and two AOB (Fig. 3). 258 

Because of differences in culture medium composition between strains, similar concentrations 259 

of NaCl or sorbitol led to different osmotic potentials and a greater osmotic potential range for 260 

AOA than AOB (Table S1). All strains were more sensitive to the effects of NaCl than sorbitol, 261 

at equivalent osmotic potentials, presumably due to direct toxicity of NaCl as shown by 262 

ANOVAs (p < 10-12; Fig 3, Supplementary Iinformation). Maximum specific growth rates of 263 

both AOA and AOB decreased with increasing NaCl concentration and AOA (Fig. 3C and D) 264 

were more sensitive than AOB (Fig. 3A and B). AOA growth was inhibited following even a 265 

slight decrease in osmotic potential (Fig. 3C and D, p < 10-4). Within AOA, Ca. N. franklandus 266 

was less sensitive than Ca. N. sinensis, whose growth was completely inhibited by 0.1 M NaCl. 267 

Inhibition of growth by sorbitol was greater for both AOA than for N. europaea, with complete 268 

inhibition of Ca. N. sinensis at -67 MPa (Fig. 3B) and a 3-fold reduction in maximum specific 269 

growth rate of Ca. N. franklandus at -98 MPa (Fig. 3B). N. europaea was inhibited by sorbitol 270 

(Fig. 3A) but maximum specific growth rate of the AOB N. multiformis increased with 271 

increasing sorbitol concentration (Fig. 3B).  272 
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4. Discussion 273 

Climate change is predicted to involve more frequent and drastic drought events 274 

(Kovats et al., 2014). Understanding the impacts of such events on soil biogeochemical 275 

processes, including nitrification, and its influence on N availability for plant growth and 276 

nitrous oxide emissions, is critical for appropriate prediction and mitigation of the 277 

consequences of climate change (Gruber and Galloway, 2008). Previous studies have 278 

demonstrated effects of drought on nitrification rate and ammonia oxidiser community 279 

structure and activity (Stark and Firestone, 1995; Placella and Firestone, 2013; Fuchslueger et 280 

al., 2014), and AOA:AOB abundance ratio has been found to decrease during drought and 281 

following rewetting (Gleeson et al., 2010; Thion and Prosser, 2014). This decrease was 282 

proposed to arise from different responses of AOA and AOB to drought-induced changes in 283 

NH4+ concentration (Thion and Prosser, 2014), but may alternatively result from different 284 

responses of AOA and AOB to water stress. Because bacteria and archaea appear to possess 285 

comparable mechanisms of adaptation to water stress (Roeßler and Müller, 2001), although 286 

using different compatible solutes, there is no a priori reason to expect differences between 287 

AOA and AOB.  288 

This study aimed to challenge the hypothesis that changes in AOA and AOB relative 289 

activities were due to drought-induced changes in NH4+ availability, testing the alternative 290 

hypothesis that differential activity changes resulted from differences in sensitivity to water 291 

stress. This was achieved using two complementary approaches, in soil microcosms and in pure 292 

AO cultures. The effects of water stress and NH4+ concentration on soil AO were distinguished 293 

through manipulation of matric potential of soil microcosms amended with different 294 

concentrations of NH4+. At high matric potential, AOB growth occurred in proportion to initial 295 

ammonium concentration; AOA also grew, but growth was greatest at the intermediate NH4+ 296 

concentration. This resulted in lower AOA:AOB ratio with high NH4+ amendment, consistent 297 

with previous reports that AOB, rather than AOA, are favoured by supply of inorganic NH4+ at 298 
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high concentration, equivalent to those frequently found following inorganic nitrogen 299 

fertilisation (Verhamme et al., 2011; Hink et al., 2017b, 2018). AO growth was reduced in 300 

microcosms in which matric potential was reduced, regardless of NH4+ concentration. At the 301 

medium matric potential, NH3 oxidation was significantly reduced, AOB abundance did not 302 

increase significantly and AOA abundance decreased, suggesting AOA cellular death. At the 303 

lowest matric potential, no activity was detected and, again, AOB survived while AOA 304 

probably died. Consequently, AOA:AOB ratio decreased with matric potential.  305 

The reduction in ammonia oxidiser activity with increased water stress therefore 306 

resulted in differential effects on AOA and AOB abundances that were independent of NH4+ 307 

concentration, suggesting that matric potential, and not NH4+ concentration, may be the more 308 

important factor influencing AO activities and greater sensitivity of AOA to drought. Water 309 

stress can result from matric and osmotic stresses and greater sensitivity of AOA to the latter 310 

was further supported by determining growth rates of pure cultures of AOA and AOB in the 311 

presence of the osmo-inducers NaCl and sorbitol. N. multiformis is typical of soil AOB. N. 312 

europaea, originally isolated from soil, is considered to be less important in terrestrial 313 

environments but has been the subject of most physiological studies of AOB, including studies 314 

of osmotic stress. The two AOA were also isolated from soil, Ca. N. franklandus from neutral 315 

soil and Ca. N. sinensis Nd2 from acid soil. All strains were inhibited by increasing osmotic 316 

stress using NaCl, which possibly resulted in part from cytotoxicity of NaCl itself, rather than 317 

osmotic stress. Previous studies have reported similar effects of NaCl on the AOB N. europaea, 318 

N. eutropha, Nitrosomonas oligotropha and Nitrosococcus mobilis (Wood and Sörensen, 1998; 319 

Claros et al., 2010; Koops et al., 1976) and the AOA Ca. Nitrosotenuis cloacae (Li et al., 2016). 320 

However, sorbitol is unlikely to be imported into AOA or AOB cells due to its relatively large 321 

molecular weight (182 g mol-1) and there is, to our knowledge, no evidence for bacterial or 322 

archaeal sorbitol cytotoxicity. Sorbitol is a proven and efficient osmo-inducer (Suga et al., 323 

2003) and it is likely that effects on AO were due to changes in osmotic stress, rather than 324 
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sorbitol toxicity. The reduced effect observed on the AOB N. multiformis may be due to its 325 

potential to metabolise sorbitol (Norton et al., 2008). Increasing osmotic stress through 326 

increased sorbitol concentration completely inhibited growth of the AOA Ca. N. sinensis and 327 

inhibition of Ca. N. franklandus was greater than that of the AOB N. multiformis and N. 328 

europaea over the range investigated. While caution must be exercised in generalising findings 329 

from this limited number of laboratory isolates to natural communities of AOA and AOB, these 330 

data do suggest greater sensitivity of AOA to osmotic stress. 331 

In conclusion, our data provide the first evidence for differences in sensitivity of soil 332 

AOA and AOB to the combined effects of water stress and increased matric and osmotic 333 

potentials. The mechanisms leading to these differences remain unknown but physiological 334 

studies of a limited number of strains demonstrated greater sensitivity of AOA to osmotic 335 

stress. The different characteristics of AOA and AOB, in particular differences in nitrous oxide 336 

emissions (Hink et al., 2017b) and responses to soil pH (Nicol and Prosser, 2012) and 337 

fertilisation strategies (Verhamme et al., 2011; Hink et al., 2018), coupled with greater AOA 338 

sensitivity to drought, therefore increase our understanding of the consequences of drought on 339 

this important biogeochemical cycling process and on the consequences for nitrogen fertiliser 340 

use efficiency and climate change.  341 
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Figure legends 474 

 475 

Figure 1. Changes in NH4+-N (A - C) and NO3--N concentrations (D - F) during incubation of 476 

soil microcosms for 28 days at (A) high (-0.019 MPa), (B) medium (-0.051 MPa) and (C) low 477 

(-0.08 MPa) matric potential (low, medium and high water stress, respectively) and with initial 478 

high (60 µg NH4+-N g-1, triangle), medium (6 µg NH4+-N g-1, square) and low (0.6 µg NH4+-N 479 

g-1, circle) NH4+-N concentration. Filled symbols indicate significant differences between each 480 

measured concentration and the initial concentration for the same treatment as tested by 3-way 481 

ANOVA followed by post-hoc Tukey test. Embedded tables show Tukey test grouping 482 

following 3-way ANOVAs with different letters indicating significant difference between 483 

levels of MP or initial NH4+-N concentration. Data are presented as mean and standard error of 484 

samples from triplicate microcosms. 485 

 486 

Figure 2. Changes in AOA (A - C) and AOB (D - F) amoA abundances during incubation of 487 

soil microcosms for 28 days at (over 28-day incubation of soil microcosms at (A) high (-0.019 488 

MPa), (B) medium (-0.051 MPa) and (C) low (-0.08 MPa) matric potential and with initial high 489 

(60 µg NH4+-N g-1, triangle), medium (6 µg NH4+-N g-1, square) and low (0.6 µg NH4+-N g-1, 490 

circle) NH4+-N concentration. Embedded tables show Tukey test grouping following 3-way 491 

ANOVAs with different letters indicating significant difference between levels of MP or initial 492 

NH4+-N concentration. Data are presented as mean and standard error of samples from triplicate 493 

microcosms. 494 

 495 

Figure 3. Maximum specific growth rate of model strains of AOB (A. N. europaea and B. N. 496 

multiformis) and AOA (C. Ca. N. franklandus and D. Ca. N. sinensis) in liquid batch culture 497 

as a function of osmotic potential, using NaCl (blue) or sorbitol (red) as osmo-inducer. Data 498 
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are presented as mean and standard error of growth rates determined from triplicate cultures. 499 

Symbols indicate significant differences as revealed by two-way (osmo-inducer nature and 500 

osmotic potential) ANOVAs followed by Tukey post-hoc tests. For clarity, only differences 501 

between control cultures (without osmo-inducer) and cultures with either sorbitol (red stars) or 502 

NaCl (blue stars) and differences between the two osmo-inducers applied at the same 503 

concentrations, resulting in the same osmotic potential (black hash) are shown. This could not 504 

be calculated for Ca. N. sinensis (panel D), whose growth was not detectable with sorbitol or 505 

NaCl at concentrations higher than 0.05 M.  506 

 507 

 508 
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 1 

Differential sensitivity of ammonia oxidising archaea and bacteria to matric and 1 
osmotic potential 2 

Supplementary information 3 
 4 
Table S1. Osmotic potential of culture media adjusted with NaCl and sorbitol. Osmotic 5 
potential (ψ) of the culture media was calculated taking into account differences in medium 6 
composition, using equation ψ = - M i R T (Lewis, 1908), where M is the molar concentration 7 
(mol l-1) of the solute, i is the van't Hoff factor of the medium, R is the ideal gas constant 8 
and T is the absolute temperature (oK) (Lewis, 1908).  9 
 10 
Osmo-inducer concentration 

(mol l-1) 
Osmotic potential (MPa) 

 AOB Ca. N. franklandus Ca. N. sinensis nd2 
0.00 -4.00 -55.0 -25.0 
0.05 -27.4 -98.0 -67.0 
0.10 -50.9 -141 -109 
0.20 -98.0 -227 -192 
0.25 -123 -284 -240 
0.30 -147 -340 -288 
0.40 -192 -399 -359 

 11 
References 12 
Lewis, G. N., 1908). The osmotic pressure of concentrated solutions, and the laws of the perfect 13 
solution. Journal of the American Chemical Society, 30, 668-683. 14 
  15 



 2 

Supplementary Figure 1. Changes in pH during incubation of soil microcosms for 28 days at 16 
(A) high (-0.019 MPa), (B) medium (-0.051 MPa) and (C) low (-0.08 MPa) matric potential 17 
and with initial high (50 mM, triangle), medium (5 mM, square) and low (0.5 mM, circle) 18 
NH4+-N concentration. Filled symbols indicate significant differences between each pH and 19 
initial pH of the corresponding treatment, tested by 3-way ANOVA followed by post-hoc 20 
Tukey test. Embedded tables show Tukey test grouping following ANOVAs with different 21 
letters indicating significant difference between levels of MP or initial NH4+-N concentration. 22 
Data are presented as mean and standard error of samples from triplicate microcosms. 23 
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Statistical models and results 30 
Tables below show statistics calculated by 3-way ANOVAs testing the effect of independent 31 
categorical variables: ammonium amendment (NH4+): High, Medium or Low; MP: High, 32 
Medium or Low; Time: T0, T7, T14, T21, T28) and generalised linear models testing regressions 33 
between AOA or AOB abundance and MP and Time as categorical variables and measured 34 
NH4+-N concentration ([NH4+]) and pH as continuous variables, with: 35 

• Df: degree of freedom 36 

• SS: sum of squared 37 

• MS: mean square 38 

• Ω2: effect size, where 0 indicates no effect and ±1 indicates maximum effect (where 39 
100% of the variance of the dependent variable is explained by the independent 40 
variable) 41 

• SE: standard error or estimated intercept or slope 42 

• Min, 1st Q, Med, 3rd Q and Max: minimum, 1st quartile, median, 3rd quartile and 43 
maximum residual value, respectively. 44 

• AIC: Akaike information criterion 45 
Lines shaded in orange highlight significant effects. 46 
 47 
1 Soil microcosms 48 
1a Soil NH4+ concentration  49 
Model:  50 
aov([NH4+] ~ NH4+ * MP * Time) 51 
 52 
Output: 53 
Effect Df SS MS F-value p-value Ω2 
NH4+ 2 112.8 56.38 11501.1 4 x 10-109 0.84 

MP 2 4.0 1.98 403.9 1 x 10-45 0.03 
Time 4 3.3 0.83 169.8 5 x 10-41 0.02 

NH4+ x MP 4 4.9 1.22 249.8 8 x 10-48 0.04 
NH4+ x Time 8 3.8 0.48 98.0 5 x 10-41 0.03 

MP x Time 8 1.7 0.20 42.3 3 x 10-27 0.01 
NH4+ x MP x 
Time 

16 
3.1 0.19 39.6 1 x 10-33 0.02 

Residuals 90 0.4 0.01   0.00 
 54 
1b Soil NO3- concentration  55 
Model:  56 
aov([NO3-] ~ NH4+ * MP * Time) 57 
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Output: 58 
Effect Df SS MS F-value p-value Ω2 

NH4+ 2 28.7 14.4 1236.0 4 x 10-66 0.21 
MP 2 24.0 12.0 1035.9 7 x 10-63 0.18 

Time 4 23.4 5.9 503.7 1 x 10-60 0.17 
NH4+ x MP 4 17.7 4.4 381.4 2 x 10-55 0.13 

NH4+ x Time 8 14.4 1.8 154.9 4 x 10-49 0.11 
MP x Time 8 12.4 1.5 133.5 2 x 10-46 0.09 
NH4+ x MP x 
Time 

16 
12.1 0.8 65.0 3 x 10-42 0.09 

Residuals 90 1.0 0.0   0.00 

 59 
1c AOA abundance  60 

ANOVA 61 
Model:  62 
aov(AOA ~ NH4+ * MP * Time) 63 
Output: 64 
Effect Df SS MS F-value p-value Ω2 

NH4+ 2 0.6 0.32 0.7 0.503 -0.002 
MP 2 41.4 20.73 44.01 5 x 10-14 0.301 

Time 4 7.2 1.82 3.87 0.006 0.040 
NH4+ x MP 4 5.8 1.46 3.10 0.019 0.029 
NH4+ x Time 8 2.1 0.26 0.56 0.805 -0.012 

MP x Time 8 28.9 3.61 7.68 9 x 10-8 0.187 
NH4+ x MP x 
Time 

16 5.2 0.32 0.69 0.792 -0.017 

Residuals 90 42.4 0.471 
  

0.00 

 65 
Generalised linear model 66 

Model: 67 
glm(AOA ~ MP * [NH4+] * Time + pH) 68 

• No biologically meaningful effect of interactions between pH and the other factors 69 

• No known random factor 70 

• Residuals were assumed to have normal distribution 71 
 72 
Output: 73 
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• Residuals: Shapiro-Wilk’s test confirms normality (p = 0.0014) 74 

Min 1st Q Med 3rd Q Max 

-2.03 -0.31 0.00 0.30 1.46 
  75 

• Coefficient: Intercept 76 
 

Estimate SE t-value p-value 
(Intercept) 0.098 0.184 0.535 0.593 

 77 

• Coefficient: Slopes 78 
 

Estimate SE t-value p-value 

MP Low 0.084 0.261 0.320 0.749 
MP Medium -0.011 0.259 -0.044 0.965 
[NH4+] 0.035 0.174 0.201 0.841 

Time 0.025 0.015 1.647 0.102 
pH -0.196 0.092 -2.129 0.035 

MP Low x [NH4+] 0.006 0.233 0.026 0.979 
MP Medium x 
[NH4+] 

-0.111 0.237 -0.470 0.639 

MP Low x Time -0.061 0.021 -2.944 0.004 

MP Medium x Time -0.053 0.019 -2.750 0.007 
[NH4+] x Time -0.034 0.018 -1.868 0.064 
MP Low x [NH4+] x 
Time 

0.028 0.021 1.353 0.179 

MP Medium x 
[NH4+] x Time 

0.038 0.021 1.794 0.075 

 79 

• AIC : 299.46 80 
1d AOB abundance  81 

ANOVA 82 
Model:  83 
aov(AOB ~ NH4+ * MP * Time) 84 
Output: 85 
Effect Df SS MS F-value p-value Ω2 

NH4+ 2 8.0 4.04 4.50 0.014 0.05 
MP 2 15.7 7.85 8.74 4 x 10-4 0.10 

Time 4 4.4 1.11 1.24 0.298 0.01 
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NH4+ x MP 4 9.4 2.36 2.63 0.039 0.04 

NH4+ x Time 8 3.5 0.44 0.49 0.859 -0.03 
MP x Time 8 7.4 0.93 1.04 0.411 0.01 
NH4+ x MP x 
Time 

16 
4.3 0.27 0.30 0.996 -0.08 

Residuals 90 80.8 0.89   0.00 

 86 
Generalised linear model 87 

Model: 88 
glm(AOB ~ MP * [NH4+] * Time + pH) 89 

• No biologically meaningful effect of interactions between pH and the other factors 90 

• No known random factor 91 

• Residuals were assumed to have normal distribution 92 
 93 
Output: 94 

• Residuals: Shapiro-Wilk’s test confirms normality (p = 1.6 x 10-7) 95 

Min 1st Q Med 3rd Q Max 

-1.48 -0.32 0.02 0.27 2.34 
  96 

• Coefficient: Intercept 97 
 

Estimate SE t-value p-value 
(Intercept) -0.513 0.218 -2.348 0.020 

 98 

• Coefficient: Slopes 99 
 

Estimate SE t-value p-value 

MP Low 0.060 0.309 0.193 0.847 
MP Medium 0.155 0.307 0.505 0.614 

[NH4+] -0.108 0.207 -0.523 0.602 
Time 0.084 0.018 4.729 7 x 10-6 

pH -0.383 0.108 -3.510 0.001 
MP Low x [NH4+] 0.063 0.276 0.227 0.821 
MP Medium x 
[NH4+] -0.059 0.280 -0.211 0.833 
MP Low x Time -0.062 0.025 -2.514 0.013 

MP Medium x Time -0.063 0.023 -2.737 0.007 
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[NH4+] x Time 0.074 0.022 3.397 0.001 
MP Low x [NH4+] x 
Time -0.070 0.025 -2.818 0.006 
MP Medium x 
[NH4+] x Time -0.069 0.025 -2.742 0.007 

 100 

• AIC : 344.89 101 
 102 
1e Soil pH  103 
Model:  104 
aov(pH ~ NH4+ * MP * Time) 105 
 106 
Output: 107 

Effect Df SS MS F-value p-value Ω2 
NH4+ 2 16.6 8.3 55.1 3 x 10-16 0.12 

MP 2 31.2 15.6 103.6 5 x 10-24 0.23 
Time 4 27.1 6.8 45.1 1 x 10-20 0.20 

NH4+ x MP 4 7.7 1.9 12.7 3 x 10-8 0.05 
NH4+ x Time 8 2.0 0.2 1.7 0.121 0.01 

MP x Time 8 25.9 3.2 21.6 6 x 10-18 0.18 
NH4+ x MP x 
Time 

16 
10.0 0.6 4.2 7 x 10-6 0.06 

Residuals 90 13.5 0.2 NA  0.00 
 108 
2 Pure culture experiment 109 
Tables below show statistics calculated by 2-way ANOVAs testing the effect of osmo-inducer 110 
nature (sorbitol or NaCl) and osmotic potential (OP) on specific growth rate (GR) on AOA and 111 
AOB strains. 112 

2.I.  2a. N. europaea 113 

Model:  114 
aov(Log10GR ~ osmo-inducer * OP) 115 
 116 
Output: 117 

Effect Df SS MS F-value p-value Ω2 
Osmo-
inducer 

1 1.6 1.61 141 2 x 10-12 0.06 

OP 6 13.0 2.17 190 2 x 10-21 0.52 
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Osmo-
inducer x OP 

6 10.1 1.69 148 7 x 10-20 0.40 

Residuals 28 0.3 0.01   0.00 
 118 

2.I. 2b N. multiformis 119 
Model:  120 
aov(Log10GR ~ osmo-inducer * OP) 121 
 122 
Output: 123 

Effect Df SS MS F-value p-value Ω2 
Osmo-
inducer 

1 14.15 14.15 7719 1 x 10-35 0.55 

OP 6 5.21 0.87 474 8 x 10-27 0.20 
Osmo-
inducer x OP 

6 6.23 1.04 566 7 x 10-28 0.24 

Residuals 28 0.05 0.01   0.00 

 124 
2.II 2c Ca. N. franklandus 125 

Model:  126 
aov(Log10GR ~ osmo-inducer * OP) 127 
 128 
Output: 129 

Effect Df SS MS F-value p-value Ω2 
Osmo-
inducer 

1 9.8 9.84 345 2 x 10-17 0.30 

OP 6 18.8 3.14 110 3 x 10-18 0.57 
Osmo-
inducer x OP 

6 3.1 0.51 18 2 x 10-8 0.09 

Residuals 28 0.8 0.03   0.00 
 130 

2.II 2d Ca. N. sinensis 131 
Model:  132 
aov(Log10GR ~ OP) 133 
NB: only the significance of the effect of NaCl, at only the lowest concentration, could be 134 
tested for Ca. N. sinensis, because the strain did not grow in any of the cultures amended with 135 
sorbitol or NaCl at concentrations higher than 0.05 M. 136 

 137 
Output: 138 
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Effect Df SS MS F-value p-value Ω2 

OP 1 0.63 0.63 280 7 x 10-5 0.98 
Residuals 4 0.01 0.01   0.00 

 139 
 140 
 141 
 142 
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