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Abstract. In this paper we study rings of invariants arising in the study of �nite

dimensional algebraic structures. The rings we encounter are graded rings of the form

K[U ]Γ where Γ is a product of general linear groups over a �eld K of characteristic zero,

and U is a �nite dimensional rational representation of Γ. We will calculate the Hilbert

series of such rings using the representation theory of the symmetric groups and Schur-

Weyl duality. We focus on the case where U = End(W⊕k) and Γ = GL(W ) and on the

case where U = End(V ⊗W ) and Γ = GL(V )×GL(W ), though the methods introduced

here can also be applied in more general framework. For the two aforementioned cases we

calculate the Hilbert function of the ring of invariants in terms of Littlewood-Richardson

and Kronecker coe�cients. When the vector spaces are of dimension 2 we also give

an explicit calculation of this Hilbert series, using Mathematica (see the appendix by

Dejan Govc).

1. Introduction

Let K be a �eld of characteristic zero. LetW be a �nite dimensional algebraic structure

over K. This can be, for example, an algebra, a Hopf algebra, a comodule algebra et

cetera (see [Me16] for a discussion about �nite dimensional algebraic structures). Such

algebraic structures are given by structure tensors, which are linear maps between tensor

powers of W . For example, a multiplication is given by a map m : W ⊗W → W , and a

comultiplication by a map ∆ : W → W ⊗W . We then understand the algebraic structure

as the tuple formed by all structure tensors (m,∆, . . .).

Geometric invariant theory provides a natural tool to study such algebraic structures.

This was carried out in [Me17] and [DKS03] for �nite dimensional semisimple Hopf alge-

bras. The idea is the following: by �xing some discrete invariants such as the dimension

of the Hopf algebra in [DKS03] or the dimension of the irreducible representations in

[Me17], and by �xing a basis for the Hopf algebra, the Hopf algebra can be described

using structure constants. In this way a Hopf algebra can be seen as a point in a certain

a�ne space AN (where N is the total number of structure constants involved). Not all

points in AN , however, de�ne Hopf algebras. The subset of points which do de�ne Hopf

algebras is an a�ne sub-variety X ⊆ AN .

The structure constants, while containing all the information about the Hopf algebra,

are not invariants. They depend on the particular choice of basis for the Hopf algebra or

for the irreducible representation of it. The a�ne space AN is equipped with an action

of a reductive algebraic group Γ which stabilizes X such that two points in X de�ne

isomorphic Hopf algebras if and only if they lie in the same orbit of Γ. For this reason,

the ring of invariants K[X]Γ comes into play here. Indeed, it is known that for �nite
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dimensional semisimple Hopf algebras all the orbits of the action of Γ on X are closed

(see Lemma 3.3. in [Me17]). Geometric Invariant Theory (GIT) tells us that in this case

the quotient set X/Γ is again an a�ne variety, and that K[X/Γ] ∼= K[X]Γ.

Since the group Γ is reductive, and since restriction of polynomial functions from AN

to X is surjective, the short exact sequence

0→ I = Ker(Res)→ K[AN ]→ K[X]→ 0

gives rise to a short exact sequence

0→ IΓ → K[AN ]Γ → K[X]Γ → 0.

In other words, K[X]Γ ∼= K[AN ]Γ/IΓ. This means that in order to study K[X]Γ we should

study K[AN ]Γ and IΓ.

Using Schur-Weyl duality, a set of generators (and in fact, a linear spanning set) for

K[AN ]Γ was described in [DKS03] and in [Me17]. The use of Schur-Weyl duality to de-

scribe the invariants stems from the work of Procesi [Pr76] who studied tuples of linear

endomorphisms of a �nite dimensional vector space. Understanding the relations between

the generators arising from the Schur-Weyl duality is more di�cult. In [Me19] a similar

GIT quotient was studied for two-cocycles over an arbitrary �nite dimensional Hopf alge-

bra. A description of all relations among these generators was also given. The resulting

presentation, however, still has in�nitely many generators and in�nitely many relations.

A �nite presentation for the ring of invariants was then given in speci�c cases.

The most di�cult part of the relations among the generators of the ring of invariants

are the relations arising from the dimensions of the associated vector spaces. In this paper

we will study the Hilbert function and Hilbert series of the rings of invariants using the

representation theory of the symmetric groups. We shall do so for two di�erent invariant

theory problems. The �rst will be the invariants for an endomorphism of a tensor product

of vector spaces. This problem arises in the study of �nite dimensional semisimple Hopf

algebras. The second one will be the invariants of a tuple of endomorphisms of a vector

space.

In [Me17] the a�ne space AN mentioned above was ⊕i,jEnd(Vi ⊗Wj) where (Vi)i are

the irreducible representations of the Hopf algebra H and (Wj)j are the irreducible rep-

resentations of the dual Hopf algebra H∗. The a�ne group was
∏

iGL(Vi)×
∏

j GL(Wj).

We will specialize this problem here, and study the invariant ring

K[End(V ⊗W )]GL(V )×GL(W ).

In Section 4 we will prove the following:

Theorem 1.1 (see Theorem 4.1). Assume that dim(V ) = d1 and dim(W ) = d2. The

dimension of the n-th homogeneous component of K[End(V ⊗W )]GL(V )×GL(W ) is∑
λ,µ,ν`n

r(λ)≤dim(V )
r(µ)≤dim(W )

g(λ, µ, ν)2

where g(λ, µ, ν) are the Kronecker coe�cients of Sn, and the sum is taken over all parti-

tions λ of n with at most d1 rows and all partitions µ of n with at most d2 rows.
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In the speci�c case where d1 = d2 = 2, we have the following more concrete result:

Theorem 1.2 (see Theorem 4.3). When d1 = d2 = 2, the Hilbert series of K[End(V ⊗
W )]GL(V )×GL(W ) is the following rational function:

1− x2 − x3 + 2x4 + 2x5 + 2x6 − x7 − x8 + x10

(1− x)(1− x2)4(1− x3)3(1− x4)2
.

Studying rings of invariants using the combinatorics of the symmetric groups was initi-

ated in [Pr76]. Procesi studied k-tuples of d× d matrices under the action of conjugation

by the same invertible matrix. In the language of algebraic structures, this can be un-

derstood as a vector space of dimension d equipped with k linear endomorphisms, or a

representation of the free algebra on k generators (see also Chapter 1 of [lB87]). If we

denote the matrices by (M1, . . .Mk) then a generating set of invariants is given by

{tr(Mi1Mi2 · · ·Mil)|1 ≤ i1, i2, . . . il ≤ k, l ∈ N}.

Procesi also proved that all the relations between these invariants are derived from the

cyclic property of the trace and the Cayley-Hamilton Theorem.

In this paper we will give a concrete description of the Hilbert function of the invari-

ant ring K[End(W )⊕k]GL(W ) using the Littlewood-Richardson coe�cients. We have the

following result:

Theorem 1.3 (see Theorem 5.2). Assume that dim(W ) = d. The n-th term of the Hilbert

function of K[End(W )⊕k]GL(W ) is∑
n1+n2+···+nk=n

∑
λ`n

r(λ)≤d

∑
λ1`n1

· · ·
∑
λk`nk

(cλ(λi))
2

where for λi ` ni the iterated Littlewood-Richardson coe�cient cλ(λi) is given in De�nition

5.1.

Again, in case d = 2 we get a more concrete description of the Hilbert series:

Theorem 1.4. In case d = 2 the Hilbert series of K[End(W )⊕k]GL(W ) is

1

(1− x2)k(1− x)2k
·

[
k−1∑
i=0

(
k − 1

i

)(
2k − 2− i
k − 1

)
x2k−2−2i

(1− x2)k−1−i−(
k

i

)(
2k − 2− i
k − 1

)
x2k−1−2i

(1− x2)k−1−i

]
.

Le Bruyn gave in Chapter 4 of [lB87] an algorithm to calculate the Hilbert series of

the ring of k 2 × 2 generic matrices which contains the above algebra as the center. A

description of the above algebra by generators and relations was given in [Dr03]. Other

results about the algebra of invariants for 3× 3 matrices can be found in [ADS06, BD08,

Ho12].

This paper is organised as follows: In Section 2 we recall some well known results about

Hilbert functions, Hilbert series and representations of the symmetric groups. We will

also recall Zelevinsky's approach to the representation theory of the symmetric groups,

using the PSH-algebra Zel. In Section 3 we will explain how the Kronecker product of
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representations can be understood in terms of Zelevinsky's algebra Zel. In Section 4

we will apply the results from previous sections to the study of the Hilbert function of

the invariant ring K[End(V ⊗W )]GL(V )×GL(W ) in terms of the Kronecker coe�cients, and

calculate the Hilbert series explicitly in case dim(V ) = dim(W ) = 2. This will be done by

reducing this to a �nite computational problem, which will be resolved in the appendix

by Dejan Govc using Mathematica. In Section 5 we will study the Hilbert function of

the invariant ring K[End(W )⊕k]GL(W ) in terms of the Littlewood-Richardson coe�cients,

and calculate explicitly the Hilbert series in case dim(W ) = 2.

2. Preliminaries and notations

Throughout this paper we will work over a �eld K of characteristic zero. All vector

spaces we will consider will be over K, all tensor products will be taken over K (unless

otherwise speci�ed), and all dimensions we will consider will be dimensions over K. We

recall that for a graded algebra

A =
⊕
n≥0

An (2.1)

in which all the homogeneous components An are �nite dimensional the Hilbert function

is given by

f(n) = dimAn (2.2)

and the Hilbert series is

HA(x) =
∑
n

f(n)xn =
∑
n

dimAnx
n ∈ Z[[x]]. (2.3)

If A is a Noetherian commutative ring its Hilbert series is in fact a rational function (see

Chapter 11 of [AM69]). If m ∈ N is a positive integer then

HA(x)(1− xm) =
∑
n

(f(n)− f(n−m))xn (2.4)

where it is understood that f(n) = 0 for n < 0. This equation will be used later when

calculating recursive relations the Hilbert function satis�es.

2.1. The representation theory of the symmetric group. We will follow here the

approach of Zelevinsky to the representation theory of the symmetric groups from [Ze81].

The idea is to study the representation theory of all the symmetric groups together, by

combining them into one Hopf algebra over Z. For a �nite group G, we write R(G) for the

Grothendieck group of the category of complex representation of G. This is a free abelian

group which has a canonical basis given by the isomorphism classes of the irreducible

representations of G. For any representation V of G we write [V ] for the isomorphism

class of V inside R(G). We will use here freely the identi�cation

R(G)⊗Z R(H) = R(G×H)

[V ]⊗ [W ] 7→ [V ⊗W ] (2.5)

where G and H are two �nite groups.

Let

Zel = ⊕n≥0R(Sn). (2.6)
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This is an abelian group which has an additional and much richer structure of a positive

self-adjoint Hopf algebra (or PSH-algebra) which we will describe now.

The multiplication in Zel is graded and is given by the formula

[V ] · [W ] = [Ind
Sn+m
Sn×SmV ⊗W ] (2.7)

where [V ] ∈ R(Sn) and [W ] ∈ R(Sm). The unit is the isomorphism class of the trivial

representation of the symmetric group S0. The comultiplication is given by the formula

∆([V ]) =
∑
a+b=n

[ResSnSa×SbV ] ∈
⊕
a+b=n

(
R(Sa)⊗Z R(Sb)

)
(2.8)

for V ∈ R(Sn). The counit is given by

ε([V ]) = 0 for V ∈ R(Sn), n > 0 and ε(1) = 1. (2.9)

The pairing of characters gives us an inner product on R(Sn) for every n. The term �self

adjoint� refers to the fact that by Frobenius reciprocity the multiplication is the adjoint

operator to the comultiplication with respect to the inner product. The term �positive�

refers to the fact that all the structure constants for the Hopf algebra operations with

respect to the basis given by the irreducible representations of Sn are positive.

Zelevinsky proved in [Ze81] that the PSH-algebra Zel is isomorphic to the polynomial

algebra Z[x1, x2, . . .], where the comultiplication is given by

∆(xn) =
∑
a+b=n

xa ⊗ xb. (2.10)

The element xn has degree n and corresponds to the trivial representation of Sn. He

also proved that every PSH-algebra is isomorphic to a tensor product of copies of this

PSH-algebra after rescaling of the degree (see Chapter I.2 in [Ze81]).

If n is a non-negative integer a partition of n is a sequence λ = (l1, . . . , lr) of non-

negative integers such that l1 ≥ l2 ≥ · · · ≥ lr > 0 and
∑

i λi = n. We call r the length of

λ and write r(λ) = r. We write λ ` n to indicate that λ is a partition of n, and for any

natural number k we write

Pk(n) := {λ|λ ` n and r(λ) ≤ k}. (2.11)

The isomorphism classes of the irreducible representations of Sn are in one-to-one corre-

spondence with partitions of n. To the partition λ we assign the Specht module Sλ (see

Chapter 2 of [Sa01]). Zelevinsky gave a concrete description of [Sλ] as an element of the

algebra Zel = Z[x1, x2, . . .]. In Chapter II.6 of [Ze81], he showed that if λ = (l1, l2, . . . lr)

then

[Sλ] = det(xli+j−i)i,j. (2.12)

This implies in particular that if λ = (a, n− a) with a ≥ n− a then

[Sλ] = xaxn−a − xa+1xn−a−1 (2.13)

and for λ = (n) we have

[S(n)] = xn. (2.14)

This is consistent with the previous assertion, that xn corresponds to the trivial represen-

tation of Sn.
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The structure constants for the algebra Zel are given by the Littlewood-Richardson

coe�cients (see also Chapter 4.9. of [Sa01]). For λ ` n and µ ` n we have

[Sλ] · [Sµ] =
∑

ν`n+m

cνλ,µ[Sν ]. (2.15)

Another important property of the Specht Modules is that they are all self-dual. Indeed,

since it is known that all the Specht modules are de�ned over the �eld of rational numbers

(Chapter 2 of [Sa01]), it holds that their all their character values are rational. But this

already implies that they are self-dual, since the character of the dual representation is

given by the complex conjugation of the character of the representation.

2.2. Schur-Weyl duality. The connection between invariants with respect to general

linear groups and representations of the symmetric groups is given by Schur-Weyl duality.

We recall here the details. For a �nite dimensional vector space V and n ∈ N, V ⊗n is a

representation of Sn in a natural way. A permutation σ ∈ Sn acts via the formula

σ · (v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n). (2.16)

We denote the resulting linear map V ⊗n → V ⊗n by Lσ ∈ End(V ⊗n). This map commutes

with the natural diagonal action of GL(V ). Schur-Weyl duality can be phrased as the

following statement (see the discussion in I.1 and Theorem 4.3. in [Pr76]):

Theorem 2.1 (Schur-Weyl duality). (1) The linear map

ΦV : KSn → (End(V )⊗n)GL(V )

σ 7→ Lσ

is a surjective ring homomorphism.

(2) If we write the Wedderburn decomposition of the group algebra of Sn,

KSn =
⊕
λ`n

End(Sλ),

where Sλ is the Specht module corresponding to the partition λ, then the kernel of

ΦV is ⊕
λ`n

r(λ)>dim(V )

End(Sλ).

As a result, we have an isomorphism of algebras

(End(V )⊗m)GL(V ) ∼=
⊕

λ∈Pdim(V )(n)

End(Sλ).

Remark 2.2. Another way of understanding the kernel of ΦV is the following: If dim(V ) ≥
n then ΦV is injective, and if dim(V ) < n then Ker(ΦV ) is the two-sided ideal of KSn
generated by the idempotent

1

(d+ 1)!

∑
σ∈Sd+1

(−1)σσ (2.17)

where d = dim(V ) (See Proposition 4.1 in [Me19]).

The following lemma will be useful when calculating invariants:
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Lemma 2.3. The map ΦV : KSn → End(V ⊗n) is Sn-equivariant, where Sn acts on KSn
by conjugation, and on End(V ⊗n) by conjugation.

Proof. This is direct, since ΦV is an algebra homomorphism, and the action of σ ∈ Sn on
End(V ⊗n) is given by conjugation with Lσ. �

Schur-Weyl duality reduces the calculation of invariants of general linear groups to

calculations in the representation theory of the symmetric group. In this paper we will

encounter several di�erent reductive groups. We will use the following lemma frequently,

following Section 4 in [Me19].

Lemma 2.4. Let Γ be a reductive group, and let U be a rational representation of Γ. The

ring of invariants K[U ]Γ is then graded and we have a natural isomorphism

(K[U ]Γ)n ∼= (((U∗)⊗n)Γ)Sn

where Sn acts on (U∗)⊗n as in the Schur-Weyl duality and (−)Sn are the Sn-coinvariants.

Proof. We start by considering the bigger graded ring K[U ] = ⊕n≥0K[U ]n. This is a

quotient of the graded tensor algebra

T (U∗) = ⊕n≥0(U∗)⊗n. (2.18)

For every n we have an exact sequence of Γ-representations⊕
σ∈Sn

(U∗)⊗neσ
i→ (U∗)⊗n

π→ K[U ]n → 0 (2.19)

where the map i is given by i(xeσ) = x − σ(x) for x ∈ (U∗)⊗n. Taking Γ-invariants, the

fact that Γ is a reductive group gives us an exact sequence⊕
σ∈Sn

((U∗)⊗neσ)Γ i→ ((U∗)⊗n)Γ π→ (K[U ])Γ
n → 0 (2.20)

which can be re-written as⊕
σ∈Sn

((U∗)⊗n)Γeσ
i→ ((U∗)⊗n)Γ π→ (K[U ])Γ

n → 0 (2.21)

This short exact sequence gives us the result:

(K[U ]Γ)n ∼= (((U∗)⊗n)Γ)Sn . (2.22)

�

The following lemma about restriction of representations will be needed in Section 5:

Lemma 2.5. Let G be a �nite group, and let H be a subgroup of G. For every G-

representation V we have a canonical isomorphisms

IndGHRes
G
HV
∼= KG/H ⊗ V

Proof. The isomorphism is given explicitly by

φ : IndGHRes
G
HV → KG/H ⊗ V

g ⊗ v 7→ gH ⊗ gv
A direct veri�cation shows that this is well de�ned and an isomorphism. �
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We �nish this section with the theorem of residues from complex analysis (see Theorem

19 in Section 4.5 of [Ah79]). This will become useful in explicitly calculating some of the

rational functions arising as Hilbert series.

Theorem 2.6 (Residue Theorem). Let f : C → C be a meromorphic function and let

γ : [a, b]→ C be a smooth closed positively oriented curve. Assume that z1, · · · , zm are all

the poles of f inside the interior of γ, and that the index of each one of them with respect

to γ is 1. Then

1

2πi

∮
γ

f(z)dz =
m∑
i=1

Resz=zi(f).

If zi is a pole of order ai then the residue at zi is equal to

Resz=zi(f) = lim
z→zi

1

(ai − 1)!

dai−1

(dz)ai−1
f(z)(z − zi)ai .

If the Laurent series of f around zi is
∑

j∈Z cjz
j then

Resz=zif = c−1.

3. The star product on Zel

For any �nite group G, the abelian group R(G) has an additional structure of a com-

mutative ring. The product is the tensor product of representations over the ground

�eld:

[V ] ? [W ] = [V ⊗W ] (3.1)

where g ∈ G acts on V ⊗W diagonally: g · (v⊗w) = gv⊗ gw. For the symmetric group,

the structure constants for this multiplication are usually referred to as the Kronecker

coe�cients. For partitions λ and µ of n we write

[Sλ] ? [Sµ] =
∑
ν`n

Sg(λ,µ,ν)
ν (3.2)

The Kronecker coe�cients g(λ, µ, ν) are much harder to calculate then the Littlewood-

Richardson coe�cients mentioned above. See for example [IMW17] and the introduction

in [BVO15].

The direct sum of the ? products ? : R(Sn) ⊗Z R(Sn) → R(Sn) for all n ≥ 0 gives

us a new multiplication on Zel. This multiplication was not considered in the work of

Zelevinsky. We will calculate this multiplication explicitly with respect to the basis of

monomials in the indeterminates xi, using the isomorphism Zel ∼= Z[x1, x2, . . .]. We begin

with the following lemma:

Lemma 3.1. The product ? satis�es the following properties:

(1) The product ? is associative.

(2) The product ? is commutative.

(3) the product ? is distributive with respect to addition, that is x?(y+z) = x?y+x?z.

(4) The map ? : Zel ⊗Z Zel→ Zel is a coalgebra map.

(5) The element xn ∈ R(Sn) is a unit with respect to ?. That is: for every y ∈ R(Sn)

it holds that y ? xn = xn ? y = y.
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Proof. The �rst three claims are straightforward. The fourth part follows from the fact

that taking tensor product of representations commutes with restricting to a subgroup.

The last claim is immediate from the fact that xn represents the trivial representation of

Sn. �

The PSH-algebra Zel has a Z-basis given by monomials in the indeterminates xn. We

now write down the ? product with respect to this basis. The homogeneous component

R(Sn) has a basis given by all monomials xa1xa2 · · ·xar such that
∑

i ai = n. We write

a = (a1, . . . , ar) and similarly b = (b1, . . . , bs). For two such monomials xa1 · · ·xar and

xb1 · · ·xbs , we consider the following set of matrices with non-negative integer values:

Ca,b := {(cij) ∈ Mr×s(N)|
∑
i

cij = bj,
∑
j

cij = ai}. (3.3)

For any c ∈ Ca,b we write

M(c) =
∏
i,j

xci,j ∈ Zel.

We claim the following:

Proposition 3.2. For two tuples (a1, . . . ar), (b1, . . . bs) such that
∑

i ai =
∑

j bj = n we

have

(xa1 · · ·xar) ? (xb1 · · ·xbs) =
∑
c∈Ca,b

M(c).

In order to prove the proposition, we begin by proving the following auxiliary result,

following the principle of the Mackey formula:

Lemma 3.3. Let G be a �nite group, and let H1 and H2 be two subgroups. Let D be a

set of representatives for the double H1 −H2 cosets in G (i.e. G = tg∈DH1gH2). Then

there is an isomorphism of G-representations

IndGH1
1⊗ IndGH2

1 ∼=
⊕
g∈D

IndGH1∩gH2g−11.

Proof. We can think of IndGH1
1 as the permutation representation KG/H1, and similarly

for H2. As such, IndGH1
1 ⊗K IndGH2

1 is isomorphic to the permutation representation

G/H1×G/H2. It is easy to see that every G-orbit contains a unique element of the form

(H1, gH2) for a unique g ∈ D. The stabilizer of (H1, gH2) is just H1∩ gH2g
−1. The result

now follows easily. �

Proof of Proposition 3.2. Considered as representations of Sn, the de�nition of the mul-

tiplication in Zel gives us

xa1 · · ·xar = [IndSnSa1×···×Sar
1] and xb1 · · · xbs = [IndSnSb1×···×Sbs

1]. (3.4)

Using the above lemma, we just need to analyze the double H1−H2 cosets in Sn and the

relevant intersections, where H1 = Sa1 × · · · × Sar and H2 = Sb1 × · · · × Sbs .
For this, consider the action of Sn on the set

X = {(X1, X2, . . . Xr)||Xi| = ai,tXi = {1, . . . n}}. (3.5)
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The action of Sn on this set is transitive, and the stabilizer of the element (X1, . . . , Xr)

with Xi = {a1 + a2 + · · ·+ ai−1 + 1, · · · , a1 + a2 + · · · ai−1 + ai} is exactly H1. Similarly,

we de�ne the set

Y = {(Y1, Y2, . . . Ys)||Yi| = bi,tYi = {1, 2, . . . , n}}. (3.6)

The group Sn acts transitively on this set, and the stabilizer of the element (Y1, . . . Yr)

where Yi = {b1 + b2 + · · · bi−1 + 1, . . . , b1 + b2 + · · ·+ bi} is exactly H2. This easily implies

that if (X1, . . . Xr), (X
′
1, . . . X

′
r) ∈ X are two tuples which are conjugate by the action of

H2 then it holds that |Xi ∩ Yj| = |X ′i ∩ Yj| for all i and j. Indeed, if g ∈ H2 satis�es

gXi = X ′i then |X ′i ∩ Yj| = |gXi ∩ Yj| = |Xi ∩ g−1Yj| = |Xi ∩ Yj| because gYj = Yj.

On the other hand, the set of cardinalities {|Xi ∩ Yj|}i,j already forms a complete set

of invariants for the H2-orbit. Indeed, if (X1, . . . Xr) and (X ′1, . . . X
′
r) are two tuples in X

which satisfy |Xi∩Yj| = |X ′i∩Yj| for all i and j, let σ ∈ Sn be a permutation which satis�es
σ(Xi∩Yj) = X ′i∩Yj for every i and every j. Since {1, . . . n} = ti,j(Xi∩Yj) = ti,j(X ′i∩Yj)
such a permutation exists. Since Xi = tj(Xi ∩ Yj) and X ′i = tj(X ′i ∩ Yj) it holds that

σ(X1, . . . Xr) = (X ′1, . . . X
′
r). Since Yj = ti(Xi∩Yj) = ti(X ′i∩Yj) it holds that σ(Yj) = Yj,

so σ ∈ H2.

The assignment

H1σH2 7→ (|Xi ∩ σ(Yj)|)i,j (3.7)

gives a bijection between the set of double H1 − H2 cosets in Sn and Ca,b. For every

matrix (ci,j) ∈ Ca,b let σc ∈ Sn be a permutation which belongs to the double H1 −H2-

coset corresponding to c. The intersection H1 ∩ σcH2σ
−1
c is then the intersection of the

stabilizer of (X1, . . . , Xr) ∈ X and the stabilizer of (Y1, . . . , Ys). This is the same as the

stabilizer of the subsets Xi ∩ Yj, which is isomorphic to
∏

i,j Sci,j .

By Lemma 3.3 and by the calculation above we get

(xa1 · · ·xar) ? (xb1 · · ·xbs) = [IndSnSa1×···×Sar
1⊗ IndSnSb1×···×Sbs

1] ∼=

[
⊕
c∈Ca,b

IndSn∏
i,j Sci,j

1] =
∑
c∈Ca,b

∏
i,j

xci,j , so (3.8)

(xa1 · · ·xar) ? (xb1 · · ·xbs) =
∑
c∈Ca,b

∏
i,j

xci,j . (3.9)

This �nishes the proof of the proposition. �

Following the proposition above, we get the following calculation which will be the key

in getting concrete results when the dimension of the relevant vector space is 2.

Proposition 3.4. The following equation holds in Zel:∑
λ∈P2(n)

[Sλ] ? [Sλ] =
∑

2i+j+k=n

x2
ixjxk −

∑
2i+1+j+k=n

xixi+1xjxk.

Proof. We use Equation 2.13 and Proposition 3.2. If λ = (l1, l2) with l1 ≥ l2 then

[Sλ] ? [Sλ] = (xl1xl2 − xl1+1xl2−1) ? (xl1xl2 − xl1+1xl2−1) =

(xl1xl2) ? (xl1xl2) + (xl1+1xl2−1) ? (xl1+1xl2−1)− 2(xl1xl2) ? (xl1+1xl2−1) =
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c∈C1(λ)

M(c) +
∑

c∈C2(λ)

M(c)− 2
∑

c∈C3(λ)

M(c) (3.10)

where

C1(λ) =

{(
c11 c12

c21 c22

)∣∣∣∣c11 + c12 = c11 + c21 = l1, c12 + c22 = c21 + c22 = l2

}
, (3.11)

C2(λ) =

{(
c11 c12

c21 c22

)∣∣∣∣c11 +c12 = c11 +c21 = l1 +1, c12 +c22 = c21 +c22 = l2−1

}
, (3.12)

C3(λ) =

{(
c11 c12

c21 c22

)∣∣∣∣c11 + c12 = l1, c11 + c21 = l1 + 1, c12 + c22 = l2 − 1, c21 + c22 = l2

}
.

(3.13)

Consider the de�ning properties of C1(λ). It holds that c12 = c21 for all matrices there,

and that C1(λ) ∩ C1(λ′) = ∅ when λ 6= λ′. By considering all partitions λ ∈ P2(n) and

recalling that l1 ≥ l2 we get⊔
λ∈P2(n)

C1(λ) =

{(
c11 c12

c21 c22

)∣∣∣∣c12 = c21, c11 ≥ c22,
∑
i,j

cij = n

}
. (3.14)

Similarly, ⊔
λ∈P2(n)

C2(λ) =

{(
c11 c12

c21 c22

)∣∣∣∣c12 = c21, c11 ≥ c22 + 2,
∑
i,j

cij = n

}
(3.15)

and ⊔
λ∈P2(n)

C3(λ) =

{(
c11 c12

c21 c22

)∣∣∣∣c12 + 1 = c21, c11 ≥ c22 + 1,
∑
i,j

cij = n

}
. (3.16)

We then have ∑
λ∈P2(n)

∑
c∈C1(λ)

M(c) =
∑

2i+j+k=n
j≥k

x2
ixjxk, (3.17)

∑
λ∈P2(n)

∑
c∈C2(λ)

M(c) =
∑

2i+j+k=n
j≥k+2

x2
ixjxk, (3.18)

∑
λ∈P2(n)

∑
c∈C3(λ)

M(c) =
∑

2i+1+j+k=n
j≥k+1

xixi+1xjxk, (3.19)

where we write i = c12, j = c11 and k = c22. By switching the j and k indices in the C2

summation we get ∑
λ∈P2(n)

∑
c∈C1(λ)

M(c) +
∑

λ∈P2(n)

∑
c∈C2(λ)

M(c) =

∑
2i+j+k=n

j≥k

x2
ixjxk +

∑
2i+j+k=n
j+2≤k

x2
ixjxk =
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2i+j+k=n
j 6=k−1

x2
ixjxk =

∑
2i+j+k=n

x2
ixjxk −

∑
2i+2k−1=n

x2
ixkxk−1 (3.20)

For the C3 sum we use a similar manipulation for changing the indices. We get

2
∑

λ∈P2(n)

∑
c∈C3(λ)

M(c) =
∑

λ∈P2(n)

∑
c∈C3(λ)

M(c) +
∑

λ∈P2(n)

∑
c∈C3(λ)

M(c) =

∑
2i+1+j+k=n

j≥k+1

xixi+1xjxk +
∑

2i+1+j+k=n
k≥j+1

xixi+1xjxk =

∑
2i+1+j+k=n

j 6=k

xixi+1xjxk =
∑

2i+1+j+k=n

xixi+1xjxk −
∑

2i+1+2j=n

xixi+1x
2
j . (3.21)

Summing it all up, we get ∑
λ∈P2(n)

[Sλ] ? [Sλ] =

∑
λ∈P2(n)

∑
c∈C1(λ)

M(c) +
∑

λ∈P2(n)

∑
c∈C2(λ)

M(c)− 2
∑

λ∈P2(n)

∑
c∈C3(λ)

M(c) =

∑
2i+j+k=n

x2
ixjxk −

∑
2i+2k−1=n

x2
ixkxk−1 −

( ∑
2i+1+j+k=n

xixi+1xjxk −
∑

2i+1+2j=n

xixi+1x
2
j

)
=

∑
2i+j+k=n

x2
ixjxk −

∑
2i+1+j+k=n

xixi+1xjxk (3.22)

where we used the equality ∑
2i+2k−1=n

x2
ixkxk−1 =

∑
2i+1+2j=n

xixi+1x
2
j (3.23)

which follows by relabeling the indices i, j, k. This concludes the proof of the proposition.

�

4. The invariant ring- the tensor product case

In this section we will calculate the Hilbert function of A := K[End(V ⊗W )]GL(V )×GL(W )

in terms of the Kronecker coe�cients. We will then calculate the Hilbert series explicitly

in case dim(V ) = dim(W ) = 2. We write U = End(V ⊗W ) and Γ = GL(V ) × GL(W ).

We write d1 = dim(V ) and d2 = dim(W ). Lemma 2.4 gives us

An ∼= (((End(V ⊗W )∗)⊗n)Γ)Sn
∼= (((V ∗ ⊗ V ∗∗ ⊗W ∗ ⊗W ∗∗)⊗n)Γ)Sn

∼=

(((V ⊗ V ∗)⊗n)GL(V ) ⊗ ((W ⊗W ∗)⊗n)GL(W ))Sn
∼=

(((End(V )⊗n)GL(V ))⊗ ((End(W )⊗n)Γ))Sn . (4.1)

Schur-Weyl duality gives us an isomorphism of Sn-representations:

(End(V )⊗n)GL(V ) ∼=
⊕

λ∈Pd1 (n)

End(Sλ) and (4.2)

(End(W⊗n))GL(W ) ∼=
⊕

λ∈Pd2 (n)

End(Sµ). (4.3)
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These isomorphisms are then combined to give us

(An) ∼=
⊕

λ∈Pd1 (n)

µ∈Pd2 (n)

(End(Sλ)⊗ End(Sµ))Sn
∼=

⊕
λ∈Pd1 (n)

µ∈Pd2 (n)

(End(Sλ ⊗ Sµ))Sn . (4.4)

Since Sn is a �nite group, the natural map XSn → X → XSn is an isomorphism between

the Sn-invariants and Sn-coinvariants for every Sn-representation X (we use here the fact

that K has characteristic zero). This implies that

An ∼=
⊕

λ∈Pd1 (n)

µ∈Pd2 (n)

End(Sλ ⊗ Sµ)Sn =
⊕

λ∈Pd1 (n)

µ∈Pd2 (n)

EndSn(Sλ ⊗ Sµ). (4.5)

In order to understand the endomorphism ring of the last Sn-representation, we can

use the decomposition of the tensor product using the Kronecker coe�cients g(λ, µ, ν).

Indeed, we have:

Sλ ⊗ Sµ ∼=
⊕
ν`n

Sg(λ,µ,ν)
ν (4.6)

and therefore

EndSn(Sλ ⊗ Sµ) ∼= EndSn(
⊕
ν`n

Sg(λ,µ,ν)
ν ) ∼= (4.7)

⊕
ν`n

Mg(λ,µ,ν)(K). (4.8)

The last equation follows from the fact that the Specht modules Sν are absolutely irre-

ducible, and therefore EndSn(Sν) ∼= K by Schur's Lemma. We thus have

An ∼=
⊕

λ∈Pd1 (n)

µ∈Pd2 (n)

Mg(λ,µ,ν)(K) (4.9)

and we get the following formula for the dimension of An:

Theorem 4.1. We have

dim(K[End(V ⊗W )]Γn) =
∑

λ∈Pd1 (n)

µ∈Pd2 (n)

g(λ, µ, ν)2.

The last formula describes the dimension of An using the Kronecker coe�cients of Sn.

The Kronecker coe�cients, however, are di�cult to calculate. We would like to get a more

concrete description for the dimension of An, at least in case that dim(V ) and dim(W ) are

small. In case dim(V ) = 1 we just get the invariant ringK[End(W )]GL(W ), which is known

to be the polynomial ring on the coe�cients of the characteristic polynomial. The case

where dim(W ) = 1 is similar. We will next study the case where dim(V ) = dim(W ) = 2
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4.1. The case dim(V ) = dim(W ) = 2. We use now the fact that all the Specht modules

are self-dual (see Section 2). For every two partitions λ, µ ` n we thus have

EndSn(Sλ ⊗ Sµ) ∼= (Sλ ⊗ Sµ ⊗ S∗λ ⊗ S∗µ)Sn ∼= (Sλ ⊗ Sλ ⊗ Sµ ⊗ Sµ)Sn . (4.10)

We rewrite An in the following way:

An ∼=
⊕

λ∈P2(n)
µ∈P2(n)

(Sλ ⊗ Sλ ⊗ Sµ ⊗ Sµ)Sn ∼= (4.11)

(
⊕

λ∈P2(n)

Sλ ⊗ Sλ ⊗
⊕

µ∈P2(n)

Sµ ⊗ Sµ)Sn . (4.12)

We showed in Proposition 3.4 that as an element of Zel the class of the representation⊕
λ∈P2(n) Sλ ⊗ Sλ is ∑

2i+j+k=n

x2
ixjxk −

∑
2i+1+j+k=n

xixi+1xjxk. (4.13)

The dimension of An is thus the following inner product:〈( ∑
2i+j+k=n

x2
ixjxk −

∑
2i+1+j+k=n

xixi+1xjxk
)?2
, xn

〉
(4.14)

since for any representation V of Sn, 〈[V ], xn〉 is the dimension of the Sn-invariant sub-

space. We start with calculating the star product

(
∑

2i+j+k=n

x2
ixjxk −

∑
2i+1+j+k=n

xixi+1xjxk)
?2 =

(
∑

2i+j+k=n

x2
ixjxk −

∑
2i+1+j+k=n

xixi+1xjxk)?

(
∑

2i+j+k=n

x2
ixjxk −

∑
2i+1+j+k=n

xixi+1xjxk). (4.15)

We use the fact that ? is distributive with respect to the addition. Let us start with

calculating ∑
2i+j+k=n

x2
ixjxk ?

∑
2i+j+k=n

x2
ixjxk. (4.16)

By Proposition 3.2 we get

xi1xi1xj1xk1 ? xi2xi2xj2xk2 =
∑
c∈Ca,b

M(c) (4.17)

where a = (i1, i1, j1, k1) and b = (i2, i2, j2, k2). We are taking here the sum over all the

monomials M(c) where c is a 4× 4 matrix in which the sums of the rows are (i1, i1, j1, k1)

and the sums of the columns are (i2, i2, j2, k2). When we take now the product

(
∑

2i1+j1+k1=n

x2
i1
xj1xk1) ? (

∑
2i2+j2+k2=n

x2
i2
xj2xk2) (4.18)

we get a sum of the form
∑

cM(c) where c now runs through all the 4 × 4 matrices in

which the sum of the �rst row is equal to the sum of the second row and the sum of



HILBERT FUNCTIONS OF RINGS OF INVARIANTS 15

the �rst column is equal to the sum of the second column. We introduce the following

notations: for i, j ∈ Z and n ∈ N we write

C(i, j, n) =

{
(ck,l) ∈ M4(N)|

∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = n

}
(4.19)

and

f(i, j, n) = |C(i, j, n)|. (4.20)

The above calculation shows us that

〈(
∑

2i+j+k=n

x2
ixjxk)

?2, xn〉 = f(0, 0, n). (4.21)

A similar calculation shows that

〈(
∑

2i+j+k=n

x2
ixjxk)(

∑
21+j+k=n

xi+1xixjxk, xn〉 = f(1, 0, n) = f(0, 1, n) (4.22)

and

〈(
∑

2i+1+j+k=n

xi+1xixjxk)
?2, xn〉 = f(1, 1, n). (4.23)

This leads us to the following conclusion:

Proposition 4.2. We have

dimAn = f(0, 0, n)− f(0, 1, n)− f(1, 0, n) + f(1, 1, n)

This already gives us a combinatorial description of the Hilbert function of A. Next,

we will calculate the Hilbert series explicitly. To do so, we write

F (x) =
∑
n≥0

dimAnx
n ∈ Z[[x]]. (4.24)

We claim the following:

Theorem 4.3. The following formula holds in Z[[x]]:

F (x) =
x10 − x8 − x7 + 2x6 + 2x5 + 2x4 − x3 − x2 + 1

(1− x)(1− x2)4(1− x3)3(1− x4)2

The proof of the above theorem will be carried in a few steps. We will �rst consider

the commutative ring

B = Z[a±1, b±1][[x]]. (4.25)

and describe
∑

i,j∈Z,k∈N f(i, j, k)aibixk as the product of reciprocals of linear polynomials

in x. We then use this to prove that dimAn satis�es a speci�c recurrence relation. Finally,

in the appendix we calculate enough values of f(i, j, k) using Mathematica to conclude

the formula for F (x).

The elements of B can be written as in�nite sums of the form
∞∑
i=0

cix
i (4.26)
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where ci ∈ Z[a±1, b±1]. We will write elements of B in a di�erent way, which will be more

e�cient for the calculations we have here. Every element of B can be written uniquely

as a sum of the form
∞∑
k=0

∑
i,j∈Z

ci,j,ka
ibjxk, where ci,j,k ∈ Z (4.27)

where for every k ≥ 0, |{(i, j)|ci,j,k 6= 0}| < ∞. We will change the order of summation

and re-write this element as ∑
i,j∈Z

∞∑
k=0

aibjci,j,kx
k. (4.28)

Writing gi,j =
∑∞

k=0 ci,j,kx
k ∈ Z[[x]] enables us to write the above element as∑

i,j∈Z

aibjgi,j. (4.29)

Notice that not every collection (gi,j)i,j of elements if Z[[x]] will give us an element of

B. Indeed, the elements gi,j should satisfy the following condition: if we write m(g) =

min{i|di 6= 0} for g =
∑∞

k=0 dkx
k then it must hold that for every k ∈ N the set

{(i, j)|m(gi,j) = k} is �nite. We use here the convention that m(0) = ∞. It is easy

to show that if (gi,j) is a collection of elements of Z[[x]] which satisfy the above condition,

then
∑

i,j∈Z a
ibjgi,j is an element of B. We call gi,j the (i, j)-part of

∑
i,j∈Z a

ibjgi,j.

For every element c ∈ 〈a, b〉 = {aibj}i,j∈Z the element 1 − cx is invertible in B. The

inverse is given explicitly by

1

1− cx
=
∞∑
k=0

ckxk. (4.30)

We claim the following:

Lemma 4.4. Consider the following element of B:

g =
1

(1− ax)2(1− bx)2(1− a−1x)2(1− b−1x)2(1− abx)
·

1

(1− ab−1x)(1− a−1bx)(1− a−1b−1x)(1− x)4
.

Then g can be written as

g =
∑
i,j∈Z

∞∑
k=0

f(i, j, k)aibjxk.

Proof. Using the above expansion for 1
1−cx we get

g =
∞∑

k11=0

ak11bk11xk11
∞∑

k12=0

ak12b−k12xk12
∞∑

k21=0

a−k21bk21xk21
∞∑

k22=0

a−k22b−k22xk22

∞∑
k13=0

ak13xk13
∞∑

k14=0

ak14xk14
∞∑

k23=0

a−k23xk23
∞∑

k24=0

a−k24xk24

∞∑
k31=0

bk31xk31
∞∑

k41=0

bk41xk41
∞∑

k32=0

b−k32xk32
∞∑

k42=0

b−k42xk42
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∞∑
k33=0

xk33
∞∑

k34=0

xk34
∞∑

k43=0

xk43
∞∑

k44=0

xk44 =

∑
kij

ak11+k12+k13+k14−k21−k22−k23−k24bk11+k21+k31+k41−k12−k22−k32−k42·

xk11+k12+k13+k14+k21+k22+k23+k24+k31+k32+k33+k34+k41+k42+k43+k44 . (4.31)

The coe�cient of aibjxk in the above expression will then be the number of all 4 × 4

matrices (kij) with non-negative integer entries such that the di�erence between the sum

of the elements of the �rst row and the sum of the elements of the second row is i, the

di�erence between the sum of the elements of the �rst column and the sum of the elements

of the second column is j, and the overall sum of the matrix entries is k. But this is exactly

f(i, j, k). �

The next proposition will reduce the calculation of the rational function F to a �nite

computation which will be carried out in Mathematica in the appendix. We write

fij ∈ Z[[x]] for the rational function
∑∞

k=0 f(i, j, k)xk.

Proposition 4.5. For (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} the rational function

(1− x)4(1− x2)8(1− x3)3(1− x4)6fij

is a polynomial in x of degree ≤ 37.

Remark 4.6. If i 6= ±1 or j 6= ±1 we still get a polynomial, which might be of higher

degree. We will not use these polynomials here.

Proof. For the proof of the proposition, we abbreviate some elements of B, and we also

introduce a group action on B. We write:

si = 1− xi, i = 1, 2, 3, 4 (4.32)

t1 :=
1

1− abx
, t2 :=

1

1− ab−1x
, t3 =

1

1− a−1bx
, t4 :=

1

1− a−1b−1x
(4.33)

t5 :=
1

1− ax
, t6 :=

1

1− a−1x
, t7 :=

1

1− bx
, t8 :=

1

1− b−1x
, t9 :=

1

1− x
(4.34)

Thus, by Lemma 4.4

g = t1t2t3t4t
2
5t

2
6t

2
7t

2
8t

4
9. (4.35)

Since t9s1 = 1 we will just consider the element

f = gs4
1 = t1t2t3t4t

2
5t

2
6t

2
7t

2
8 (4.36)

We have an action of the dihedral group of order 8

Θ := 〈α, β, γ|α2, β2, γ2, [β, γ], αβα = γ〉 (4.37)

on the free abelian group of rank 2 generated by a and b. This action is given by

α(a) = b, α(b) = a, β(a) = a−1, β(b) = b,

γ(a) = a, γ(b) = b−1. (4.38)

The action of Θ on 〈a, b〉 induces in a natural way an action on B. In particular, a direct

veri�cation shows that the elements of Θ permute the elements {t1, t2, . . . t8} and stabilize
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t9. We will use this symmetry to reduce some of the calculation in what follows. For a

subset Z ⊆ B we write spanΘ{Z} for spanQ{θ ·z}θ∈Θ,z∈Z . We also notice that the element

f ∈ B is stable under the action of Θ.

During the course of the proof we will use the following equations, which are easy to

verify:

s2t1t4 = t1 + t4 − 1 (4.39)

s2t2t3 = t2 + t3 − 1 (4.40)

s2t5t6 = t5 + t6 − 1 (4.41)

s2t7t8 = t7 + t8 − 1 (4.42)

s4t1t2t6 = t2t6 + t1t6 + t1t2(1+a−1x)− t6− t1(1+a−1x)− t2(1+a−1x)+(1+a−1x) (4.43)

s3t1t6t8 = t1t6 + t1t8 + t6t8 − t1 − t6 − t8 + 1. (4.44)

From Equations 4.39-4.42 we get

s2
2t1t2t3t4 ∈ span{t1, t4, 1} · {t2, t3, 1} = span{t1t2, t1t3, t1, t2t4, t3t4, t4, t2, t3, 1} =

spanΘ{t1t2, t1, 1}. (4.45)

Since (t5t6t7t8)2 is stable under the action of Θ we get that

s2
2f ∈ spanΘ{t1t2(t5t6t7t8)2, t1(t5t6t7t8)2, (t5t6t7t8)2}. (4.46)

We continue with analyzing t1t2t6 using Equation 4.43. We have

s4t1t2t6 ∈ span{1, a−1x} · {t1t2, t1t6, t2t6, t1, t2, t6, 1}. (4.47)

This implies that

s2
4t1t2t

2
6 ∈ span{1, a−1x} · {s4t1t2t6, s4t1t

2
6, s4t2t

2
6, s4t1t6, s4t2t6, s4t

2
6, s4t6} ⊆

s4·span{1, a−1x}·{t1t26, t2t26, t1t6, t2t6, t26, t6}∪{1, a−1x, a−2x2}·{t1t2, t1t6, t2t6, t1, t2, t6, 1} ⊆
span{1, a−1, a−2} · {1, x, x2, x3, x4, x5} · {t1t26, t2t26, t1t6, t2t6, t1t2, t26, t6, t1, t2, 1} (4.48)

We thus have

s2
4s

2
2f ∈ spanΘ{s2

4t1t2t
2
6(t5t7t8)2, s2

4t1(t5t6t7t8)2, s2
4(t5t6t7t8)2} ⊆

span{1, x, x2, x3, x4, x5}·(
spanΘ

(
{1, a−1a−2} · {t1t26, t2t26, t1t6, t2t6, t1t2, t26, t6, t1, t2, 1} · (t5t7t8)2

)
+

spanΘ{s2
4t1(t5t6t7t8)2, s2

4(t5t6t7t8)2}. (4.49)

We next use the fact that s2
4 ∈ span{1, x, x2, x3, x4, x5, x6, x7, x8} and that

γ(a−1) = a−1, γ(t7t8) = t7t8, γ(t5) = t5, γ(t6) = t6

to deduce that

s2
4s

2
2f ∈ span{1, x, x2, x3, x4, x5, x6, x7, x8}·(

spanΘ

(
{1, a−1a−2} · {t1t26, t1t6, t1t2, t26, t6, t1, t2, 1} · (t5t7t8)2

))
. (4.50)

We rewrite the above equation. We have

{t1t26, t1t6, t1t2, t26, t6, t1, t2, 1} · (t5t7t8)2 =

{t1t26t28(t5t7)2, t1t6t
2
8(t5t7)2, t1t2t

2
8(t5t7)2, t26t

2
8(t5t7)2,
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t6t
2
8(t5t7)2, t1t

2
8(t5t7)2, t2t

2
8(t5t7)2, t28(t5t7)2} (4.51)

and so

s2
4s

2
2f ∈ span{xi}8

i=0 ·

(
spanΘ

(
(t5t7)2{1, a−1, a−2}· (4.52)

{t1t26t28, t1t6t28, t1t2t28, t26t28, t6t28, t1t28, t28}
))

.

We have erased t2t
2
8(t5t7)2 from the spanning set, because t1t

2
8t

2
5t

2
7a
i and t2t

2
8t

2
5t

2
7a
i are

conjugate under the action of γ ∈ Θ for every i. From Equation 4.44 we deduce that

s3t1t6t8 ∈ span{t1t6, t1t8, t6t8, t1, t6, t8, 1}. (4.53)

This implies that

s2
3t1t6t

2
8 ∈ span{s3t1t6t8, s3t1t

2
8, s3t6t

2
8, s3t1t8, s3t6t8, s3t

2
8, s3t8} ⊆

span{t1t6, t1t8, t6t8, t1, t6, t8, 1, s3t1t
2
8, s3t6t

2
8, s3t1t8, s3t6t8, s3t

2
8, s3t8} =

t1span{t6, t8, 1, s3t
2
8, s3t8}+ span{t6t8, t6, t8, 1, s3t6t

2
8, s3t6t8, s3t

2
8, s3t8} ⊆

span{1, x3} · {t1t6, t1t8, t1, t1t28, t6t8, t6, t8, 1, t6t28, t28} (4.54)

and similarly

s2
3t1t

2
6t8 ∈ span{t1t6, t1t8, t6t8, t1, t6, t8, 1, s3t1t

2
6, s3t

2
6t8, s3t1t6, s3t6t8, s3t

2
6, s3t6}, (4.55)

s3
3t1t

2
6t

2
8 ∈ span{s2

3t1t
2
6t

8, s2
3t1t6t

2
8, s

2
3t

2
6t

2
8, s

2
3t1t6t8, s

2
3t

2
6t8, s

2
3t6t

2
8, s

2
3t6t8} ⊆

span{t1t6, t1t8, t6t8, t1, t6, t8, 1, s3t1t
2
8, s3t1t

2
6, s3t6t

2
8, s3t

2
6t8,

s3t1t6, s3t1t8, s3t6t8, s3t
2
6, s3t

2
8, s3t6, s3t8,

s2
3t

2
6t

2
8, s3t1t6, s3t1t8, s3t6t8, s3t1, s3t6, s3t8, s3, s

2
3t

2
6t8, s

2
3t6t

2
8, s

2
3t6t8} =

t1 · span{t6, t8, 1, s3t
2
8, s3t

2
6, s3t6, s3t8, s3}+

span{t6t8, t6, t8, 1, s3t6t
2
8, s3t

2
6t8, s3t6t8, s3t

2
6, s3t

2
8, s3t6, s3t8, s

2
3t

2
6t

2
8, s

2
3t

2
6t8, s

2
3t6t

2
8, s

2
3t6t8} ⊆

span{1, x3} ·
(
t1 · span{t6, t8, 1, t26, t28}+

{t6t8, t6, t8, 1, t6t28, t26t8, t26, t28, s3t
2
6t

2
8, s3t

2
6t8, s3t6t

2
8, s3t6t8}

)
. (4.56)

We want to calculate s3
3s

2
4s

2
2f . For this we use the fact that

s3 · span{1, x3} ⊆ span{1, x3, x6}. (4.57)

We begin by writing

s3
3 · {t1t26t28, t1t6t28, t1t2t28, t26t28, t6t28, t1t28, t28} =

span{1, x3}
(
t1 · span{t6, t8, 1, t26, t28}+

{t6t8, t6, t8, 1, t6t28, t26t8, t26, t28, s3t
2
6t

2
8, s3t

2
6t8, s3t6t

2
8, s3t6t8}+

s3 · {t1t6, t1t8, t1, t1t28, t6t8, t6, t8, 1, t6t28, t28}
)

+

span{s3
3t1t2t

2
8, s

3
3t

2
6t

2
8, s

3
3t6t

2
8, s

3
3t1t

2
8, s

3
3t

2
8} ⊆

span{xi}9
i=0span{t1t6, t1t8, t1, t1t26, t1t28, 1, t6, t8, t6t8, t6t28, t26t8, t26, t28, t26t28, t1t2t28}. (4.58)
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This implies

s3
3s

2
4s

2
2f ∈ span{xi}17

i=0 ·

(
spanΘ

(
{1, a−1, a−2}· (4.59)

{t1t6(t5t7)2, t1t8(t5t7)2, t1(t5t7)2, t1t
2
6(t5t7)2, t1t

2
8(t5t7)2, (t5t7)2, t6(t5t7)2,

t8(t5t7)2, t6t8(t5t7)2, t6t
2
8(t5t7)2, t26t8(t5t7)2, t26(t5t7)2, t28(t5t7)2, t26t

2
8(t5t7)2, t1t2t

2
8(t5t7)2}

))
.

Next, we use Equation 4.39 again. This equation implies that

s2t5t6 ∈ span{t5, t6, 1} (4.60)

Therefore,

s3
2t

2
5t

2
6 ∈ span{s2t

2
5, s2t5, s2t

2
6, s2t6, s2, s2t5t6} ⊆

span{s2t
2
5, s2t5, s2t

2
6, s2t6, s2, t5, t6, 1} ⊆

span{1, x2} · {t25, t5, t26, t6, 1}. (4.61)

A similar result holds for the pair (t7, t8) using a similar equation. By going through all

the products in Equation 4.59 we get that

s6
2s

3
3s

2
4s

2
2f ∈ span{xi}29

i=0 · spanΘ{{1, a−1a−2} · ti1t
j1
5 t

j2
6 t

k1
7 t

k2
8 }(i,j1,j2,k1,k2)∈I (4.62)

where

I = {(i, j1, j2, k1, k2)|i ∈ {0, 1}, j1, j2, k1, k2 ∈ {0, 1, 2}, j1j2 = k1k2 = ij2k2 = 0}. (4.63)

We would like to show that for every (i, j1, j2, k1, k2) ∈ I the (0, 0), (0, 1), (1, 0) and (1, 1)

parts of

spanΘ{{1, a−1a−2} · ti1t
j1
5 t

j2
6 t

k1
7 t

k2
8 } (4.64)

are polynomials of low degree. For this it is enough to show that the (r1, r2) parts of

ti1t
j1
5 t

j2
6 t

k1
7 t

k2
8 are polynomials of low degree, where r1 ∈ {−1, 0, 1, 2, 3}, r2 ∈ {−1, 0, 1} and

(i, j1, j2, k1, k2) ∈ I. We claim the following:

Lemma 4.7. For parameters as above the (r1, r2) part of ti1t
j1
5 t

j2
6 t

k1
7 t

k2
8 is a polynomial in

x of degree at most 8.

Proof. We recall the speci�c description of the elements te ∈ Q[a±1, b±1][[x]]:

t1 =
1

1− abx
, t5 =

1

1− ax
, t6 =

1

1− a−1x

t7 =
1

1− bx
, t8 =

1

1− b−1x
.

Writing now
1

1− cx
=
∑
l≥0

cixi

for any c ∈ 〈a, b〉, we get that in all of the products above the following condition holds:

one of a or b appears in the product only with positive or only with negative powers. This

already limits the possible powers of x which might appear. We will exhibit this with

t1t5t8 and with t5t7. All the other calculations are similar. We have:

t1t5t8 =
∑

l1,l2,l3≥0

al1+l2bl1−l3xl1+l2+l3 .



HILBERT FUNCTIONS OF RINGS OF INVARIANTS 21

If we write l1 + l2 = r1 and l1 − l3 = r2 then l3 = l1 − r2 ≤ r1 − r2 ≤ 4 and l1 + l2 ≤ 4, so

the highest power in which x will appear in the (r1, r2) part is 4+3=7. For t5t7 we get :

t5t7 =
∑
l1,l2≥0

al1b−l2xl1+l2

and the powers of x which appear in the (r1, r2) parts which are relevant for us are at

most 3 + 1 = 4. The other calculations are similar. �

The proof that for any i, j ∈ Z the (i, j)-part of s8
2s

3
3s

2
4f is a polynomial (possibly of

degree bigger than 37) follows from a similar argument to that which appears in the last

lemma. For (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} the last lemma shows that the we get a

polynomial of degree bounded by 8 + 29 = 37. This �nishes the proof of Proposition

4.5. �

Proposition 4.5 proves that dimAn satis�es a speci�c recursive relation. In the appendix

we will calculate enough values of dimAn, and deduce the formula for the rational function

in Theorem 4.3.

5. Invariants for a tuple of endomorphisms

In this section we will study the ring of invariants A = K[U ]Γ where U = End(W )⊕k

and Γ = GL(W ). In other words- these are invariants for k-tuples of endomorphisms of

W under conjugation by the same automorphism. This question was studied by Procesi

in [Pr76]. For a tuple (M1, . . .Mk) in End(W )⊕k Procesi showed that all the Γ-invariants

are generated by polynomials of the form Tr(Mi1Mi2 · · ·Mir). He also described the

relations between these polynomials, showing that they all can be deduced from the

Cayley-Hamilton Theorem. We will give here a description of the Hilbert function of

the invariant ring. To do so, we introduce the following iterated Littlewood-Richardson

coe�cients.

De�nition 5.1. Let n = n1 + n2 + · · · + nk. Let λi ` ni and let λ ` n. The iterated

Littlewood-Richardson coe�cient cλ(λi) is the unique non-negative integer for which the

formula

[Sλ1 ] · [Sλ2 ] · · · [Sλk ] =
∑
λ`n

cλ(λi)[Sλ]

holds in the Algebra Zel.

Using the associativity of the multiplication in Zel one can easily show that

cλ(λi) =
∑

µ1`(n1+n2)···µk−2`n−nk

cµ1λ1,λ2c
µ2
µ1,λ3
· · · cλµk−2,λk

. (5.1)

We write

U = End(W )⊗k =
k⊕
i=1

End(W )ei.

We will thus think of the tuple (M1, . . .Mk) as
∑

iMiei. We have:

An ∼= ((U⊗n)Γ)Sn =
( k⊕
i1,i2,...in=1

(End(W )⊗n ⊗ ei1 ⊗ ei2 ⊗ · · · ⊗ ein)Γ
)
Sn
. (5.2)
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The direct sum has kn direct summands, which the group Sn permutes. As an Sn-set the

set of direct summands is the same as the Sn-set {1, . . . , k}n in which the action is given

by

σ(i1, . . . in) = (iσ−1(1), . . . iσ−1(n)). (5.3)

The orbits for this action are in one to one correspondence with non-ordered partitions

(n1, . . . , nk) of n. The orbit which corresponds to (n1, . . . nk) is

{(i1, . . . in)|∀l ≤ k|{j|ij = l}| = nl}. (5.4)

This orbit contains a unique point (i1, i2, . . . in) such that i1 ≤ i2 ≤ · · · ≤ in. The stabilizer

of this point is the subgroup Sn1 × · · · ×Snk . Thus, the Sn coinvariants in the description

of An above are given by

( k⊕
i1,i2,...,in=1

(End(W )⊗n ⊗ ei1 ⊗ ei2 ⊗ · · · ⊗ ein)Γ
)
Sn
∼=

⊕
n1+···+nk=n

(
(End(W )⊗n ⊗ e⊗n1

1 ⊗ e⊗n2
2 ⊗ · · · ⊗ e⊗nkk )Γ

)
Sn1×···×Snk

∼=

⊕
n1+···+nk=n

(
(End(W )⊗n)Γ

)
Sn1×···×Snk

. (5.5)

Using Schur-Weyl duality, we get

(End(W )⊗n)Γ ∼=
⊕

λ∈Pd(n)

End(Sλ) (5.6)

where d = dim(W ). Using again the isomorphism XG → X → XG between coinvariants

and invariants, this time for the �nite group G = Sn1 × · · · × Snk , we get

An ∼=
⊕

n1+n2+···+nk=n

⊕
λ∈Pd(n)

EndSn1×···×Snk (Sλ). (5.7)

The restriction of Sλ to Sn1 × · · · × Snk is given by⊕
λ1`n1

⊕
λ2`n2

· · ·
⊕
λk`nk

(Sλ1 ⊗ Sλ2 ⊗ · · · ⊗ Sλk)
⊕cλ

(λi) . (5.8)

since Sλ1 ⊗ · · · ⊗ Sλk is an irreducible Sn1 × · · · × Snk representation, this implies that

An ∼=
⊕

n1+n2+···+nk=n

⊕
λ∈Pd(n)

⊕
λ1`n1

· · ·
⊕
λk`nk

Mcλ
(λi)

(K). (5.9)

This gives us the following formula for the dimension of An:

Theorem 5.2. For every n ≥ 0 we have

dim(An) =
∑

n1+n2+···+nk=n

∑
λ∈Pd(n)

∑
λ1`n1

· · ·
∑
λk`nk

(cλ(λi))
2

We �nish this section with concrete calculations in case d = dim(W ) = 2.
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5.1. The case dim(W ) = 2. We will use Frobenius Reciprocity and Lemma 2.5 to give

a more concrete formula for the dimension of An. We have

EndSn1×···×Snk (Sλ) = HomSn1×···×Snk (Sλ,Sλ) =

HomSn1×···×Snk (ResSnSn1×···×Snk
Sλ,ResSnSn1×···×SnkSλ)

∼=

HomSn(IndSnSn1×···×Snk
ResSnSn1×···×Snk

Sλ,Sλ) ∼=

HomSn((KSn/Sn1 × · · · × Snk)⊗ Sλ,Sλ) ∼=

HomSn(IndSnSn1×···×Snk
1⊗ Sλ,Sλ) ∼=

HomSn(IndSnSn1×···×Snk
1⊗ Sλ ⊗ Sλ,1). (5.10)

The �rst isomorphism comes from Frobenius reciprocity, while the second isomorphism

comes from Lemma 2.5.

Proposition 3.4 and Equation 5.7 now give us that

dim(An) =
∑

n1+n2+···+nk=n

∑
λ∈P2(n)

〈
(xn1xn2 · · · xnk) ? [Sλ] ? [Sλ], xn

〉
=

∑
n1+n2+···+nk=n

( ∑
2i+j+l=n

〈
(xn1 · · ·xnk) ? (x2

ixjxl), xn
〉
−

∑
2i+1+j+l=n

〈
(xn1 · · ·xnk) ? (xixi+1xjxl), xn

〉)
(5.11)

Using now Proposition 3.2 for the multiplication of monomials in xi under the ?-product

gives us

dim(An) =
∑

n1+···+nk=n

( ∑
2i+j+l=n

|C(n1,...,nk),(i,i,j,l)| −
∑

2i+1+j+l=n

|C(n1,...,nk),(i+1,i,j,l)|
)
. (5.12)

For i ∈ Z and m ∈ N write now

g(i, n) = |{(cr,s) ∈ M4×k(Z≥0)|
∑
s

c1,s − c2,s = i}|. (5.13)

Consider the set which appears in the de�nition of g(0, n). The sums of columns in

such a matrix is given by a tuple (n1, . . . , nk) which sums up to n, and the sums of rows is

given by a tuple (i, i, j, l) such that 2i+ j+ l = n. By de�nition of the sets C(n1,...,nk),(i,i,j,l)

we get

g(0, n) =
∑

n1+···+nk=n

∑
2i+j+l=n

|C(n1,...,nk),(i,i,j,l)|.

A similar analysis applies to g(1, n). We get the following result:

Proposition 5.3. We have dim(An) = g(0, n)− g(1, n).

To get a concrete formula for dim(An) we use again the auxiliary commutative ring

B = Z[a±1, b±1][[x]] from the previous section. In fact, all the calculations here will take

place in the smaller subring Z[a±1][[x]]. The proof of the following lemma is completely

analogous to the proof of Lemma 4.4 and we therefore omit it.
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Lemma 5.4. The element

h =
1

(1− ax)k(1− a−1x)k(1− x)2k

of B has the expansion

h =
∑

i∈Z,n≥0

g(i, n)aixn.

We thus need to calculate the coe�cients of a0 and of a1 for the function h. We shall

do so by using the Theorem of Residues from complex analysis.

For this, consider the function h as a function of the complex variable a, and assume

that x is a complex number with small modulus. The expansion

1

1− ax
=
∑
i

aixi

is valid when |a| < 1/|x| and the expansion

1

1− a−1x
=
∑
i

a−ixi

is valid when |x| < |a|. We will assume for the rest of this section that |x| < 0.1 and that

0.9 < |a| < 1.1. We then get that the desired rational function we are looking for is given

by
1

2πi

∮
|a|=1

(a−1 − 1)da

(1− ax)k(1− a−1x)k(1− x)2k
(5.14)

where we have used the fact that the function g is symmetric with respect to inverting

i, that is g(i, n) = g(−i, n) and in particular g(−1, n) = g(1, n). Since a = x is the only

pole of the integrand in the domain {a||a| < 1} ⊆ C we get

1

2πi

∮
|a|=1

(a−1 − 1)da

(1− ax)k(1− a−1x)k(1− x)2k
= Resa=x

(a−1 − 1)

(1− ax)k(1− a−1x)k(1− x)2k
=

1

(1− x)2k
Resa=x

a−1 − 1

(1− ax)k(1− a−1x)k
(5.15)

In order to �nd the residue we write the Laurent series of the function around a = x, and

we use the equality

1

(1− w)n
=
∞∑
i=0

(
i+ n− 1

n− 1

)
wi for w ∈ C with |w| < 1. (5.16)

We introduce the variable z = a− x. By substitute we get

1

(1− x)2k
· a−1 − 1

(1− ax)k(1− a−1x)k
=

ak−1 − ak

(1− x)2k(1− ax)k(a− x)k
=

(z + x)k−1 − (z + x)k

(1− x)2k(1− (z + x)x)kzk
=

(z + x)k−1 − (z + x)k

(1− x)2k(1− x2 − xz)kzk
=

1

(1− x2)k(1− x)2k

(z + x)k−1 − (z + x)k

(1− x
1−x2 z)kzk

=
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z−k
1

(1− x2)k(1− x)2k
(
k−1∑
i=0

(
k − 1

i

)
zixk−1−i−

k∑
i=0

(
k

i

)
zixk−i)

∞∑
j=0

(
j + k − 1

k − 1

)
xj

(1− x2)j
zj =

z−k
1

(1− x2)k(1− x)2k

[
k−1∑
i=0

∞∑
j=0

(
k − 1

i

)(
j + k − 1

k − 1

)
xk+j−1−i

(1− x2)j
zi+j−

k∑
i=0

∞∑
j=0

(
k

i

)(
j + k − 1

k − 1

)
xk+j−i

(1− x2)j
zi+j

]
(5.17)

The residue we are looking for is the coe�cient of z−1 in the above expression. It is equal

to
1

(1− x2)k(1− x)2k
·

[
k−1∑
i=0

(
k − 1

i

)(
2k − 2− i
k − 1

)
x2k−2−2i

(1− x2)k−1−i−(
k

i

)(
2k − 2− i
k − 1

)
x2k−1−2i

(1− x2)k−1−i

]
. (5.18)

This �nishes the proof of Theorem 1.4. For small values of k we get the following explicit

formulas:

For k = 1 we get
1

(1− x2)(1− x)2
(1− x) =

1

(1− x2)(1− x)
. (5.19)

This is consistent with the fact that in this case the invariant ring is a polynomial ring in

the variables Tr(M1) and Tr(M2
1 ).

For k = 2 we get

1

(1− x2)2(1− x)4

[
2

x2

1− x2
+

x0

(1− x2)0
− 2

x3

1− x2
− 2

x

(1− x2)0

]
=

1

(1− x2)3(1− x)4

[
2x2 + 1− x2 − 2x3 − 2x+ 2x3

]
=

1

(1− x2)3(1− x)4
(x2 − 2x− 1) =

1

(1− x2)3(1− x)2
. (5.20)

This is consistent with the fact that in this case the invariant ring is a polynomial ring in

Tr(M1), T r(M2
1 ), T r(M2), T r(M2

2 ) and Tr(M1M2).

For k = 3 we get

1

(1− x2)3(1− x)6

[
6

x4

(1− x2)2
+ 6

x2

1− x2
+

x0

(1− x2)0
−

6
x5

(1− x2)2
− 9

x3

(1− x2)1
− 3

x1

(1− x2)0

]
=

1

(1− x2)5(1− x)6

[
6x4 + 6x2 − 6x4 + 1− 2x2 + x4 − 6x5 − 9x3 + 9x5 − 3x+ 6x3 − 3x5

]
=

1

(1− x2)5(1− x)6

[
x4 − 3x3 + 4x2 − 3x+ 1

]
=

(1− x)2(1− x+ x2)

(1− x2)5(1− x)6
=
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1− x+ x2

(1− x2)5(1− x)4
. (5.21)

Appendix A. Calculation of the first 100 values of f(i, j, n) and F (x)

using Mathematica

by DEJAN GOVC

In this appendix we will calculate the values of f(i, j, n) for |i|, |j|, n ≤ 100 for the function

f(i, j, n) introduced in Section 4. Notice that f(i, j, n) = 0 if |i| > n or |j| > n. We begin

by introducing some auxiliary functions following Lemma 4.4:

f 1(i, j, n) =

∣∣∣∣{(ck,l) ∈ M4(Z≥0)|
∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = m,

ci,j = 0 unless (i, j) = (1, 1)}
}∣∣∣∣ (A.1)

f 2(i, j, n) =

∣∣∣∣{(ck,l) ∈ M4(Z≥0)|
∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = m,

ci,j = 0 unless (i, j) = (1, 2)}
}∣∣∣∣ (A.2)

f 3(i, j, n) =

∣∣∣∣{(ck,l) ∈ M4(Z≥0)|
∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = m,

ci,j = 0 unless (i, j) = (2, 1)}
}∣∣∣∣ (A.3)

f 4(i, j, n) =

∣∣∣∣{(ck,l) ∈ M4(Z≥0)|
∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = m,

ci,j = 0 unless (i, j) = (2, 2)}
}∣∣∣∣ (A.4)

f 5(i, j, n) =

∣∣∣∣{(ck,l) ∈ M4(Z≥0)|
∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = m,

ci,j = 0 unless (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}
}∣∣∣∣ (A.5)

f 6(i, j, n) =

∣∣∣∣{(ck,l) ∈ M4(Z≥0)|
∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = m,

ci,j = 0 unless (i, j) ∈ {(3, 1), (3, 2), (4, 1), (4, 2)}
}∣∣∣∣ (A.6)

f 7(i, j, n) =

∣∣∣∣{(ck,l) ∈ M4(Z≥0)|
∑
l

c1,l − c2,l = i,
∑
k

ck,1 − ck,2 = j,
∑
k,l

ck,l = m,

ci,j = 0 unless (i, j) ∈ {(3, 3), (3, 4), (4, 3), (4, 4)}
}∣∣∣∣ (A.7)
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In other words, each of the functions f l(i, j, n) counts the number of matrices with the

same de�ning property of f(i, j, n), under the additional restrictions that only a limited

subset of the entries are non-zero. The following interpolation formula is immediate:

Lemma A.1. We have

f(i, j, n) =
∑

f 1(i1, j1, n1)f 2(i2, j2, n2)f 3(i3, j3, n3)f 4(i4, j4, n4)·

f 5(i5, j5, n5)f 6(i6, j6, n6)f 7(i7, j7, n7)

where the sum is taken over all nr, ir, jr such that
∑

r nr = n,
∑

r ir = i and
∑

r jr = j.

We also have the following formulas for the di�erent f r(i, j, n) functions:

f 1(i, j, n) = δn,iδn,j, f
2(i, j, n) = δi,nδ−j,n

f 3(i, j, n) = δ−n,iδn,j, f
4(i, j, n) = δ−i,nδ−j,n

f 5(i, j, n) = δj,0δn−i mod 2,0((n− i)/2 + 1)((n+ i)/2 + 1)

f 6(i, j, n) = δi,0δn−j mod 2,0((n− j)/2 + 1)((n+ j)/2 + 1)

f 7(i, j, n) =

(
n+ 3

3

)
(A.8)

The interpolation formula above enables us to calculate the values of f(i, j, n) using

Mathematica. We wrote the following code:

ClearAll[F,f,dir,delta]

dir={{1,1,1},{1,-1,1},{-1,1,1},{-1,-1,1}};

F[k_,{i_,j_,n_}]:=F[k,{i,j,n}]=Sum[F[k-1,{i,j,n}-r dir[[k]]],{r,0,n+1}]

This gives interpolation with the functions f1, f2, f3, f4.

F[0,{i_,j_,n_}]:=F[0,{i,j,n}]=Sum[If[EvenQ[n-i-j-m],

Sum[Binomial[m+3,3](k+1)(k+Abs[i]+1)((n-Abs[i]-Abs[j]-m)/2-k+1)

((n-Abs[i]-Abs[j]-m)/2-k+Abs[j]+1),

{k,0,(n-Abs[i]-Abs[j]-m)/2}],0],{m,0,n-Abs[i]-Abs[j]}]

This part gives interpolation with the functions f5, f6, f7.

f[n_]:=f[n]=F[4,{0,0,n}]-2F[4,{1,0,n}]+F[4,{1,1,n}]

Here we restrict our attention to the relevant alternating sum.

Table[f[n],{n,0,100}]//TableForm

This gives the following output:

1,1,4,6,16,23,52,77,150,224,396,583,964,1395,2180,3100,4639,6466,9344,12785,

17936,24121,33008,43674,58512,76277,100312,129009,166932,212022,270448,339605,

427677,531462,661652,814348,1003396,1224088,1494124,1807954,2187942,2627594,

3154972,3762544,4485172,5314292,6292836,7411150,8721791,10213967,11951528,

13922650,16204356,18783815,21753488,25099607,28932476,33237650,38145976,

43642527,49881864,56848831,64725080,73495746,83373309,94343640,106654388,

120292717,135546036,152403681,171197884,191920988,214955830,240298735,

268389268,299229137,333321320,370674266,411861940,456901107,506444699,

560519876,619867224,684526384,755335320,832348504,916511528,1007896684,

1107568268,1215619404,1333245416,1460563640,1598913368,1748440272,1910641560,
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2085695460,2275272477,2479588053,2700502140,2938272966,3194967240

Proposition 4.5 gives us a recursive formula for f(0, 0, n)−f(0, 1, n)−f(1, 0, n)+f(1, 1, n)

and we get the following explicit rational function:

delta[S_,f_]:=delta[S,f]=delta[Most[S],(f[#]-f[#-Last[S]])&]

delta[{},f_]:=delta[{},f]=f

Here we multiply f by the polynomial (1− x4)2(1− x3)3(1− x2)8(1− x)4 as suggested by

Proposition 4.5.

g[n_]:=g[n]=delta[{4,4,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1},f][n]

Factor[Plus@@Table[g[n]x^n,{n,0,100}]]

This yields the following output:

-(-1+x)^7 (1+x)^4 (1-x^2-x^3+2 x^4+2 x^5+2 x^6-x^7-x^8+x^10)

After canceling common denominators, we get Theorem 4.3.

Remark A.2. The resulting sequence of integers does not appear in the On-line Ency-

clopedia of Integer Sequences (https://oeis.org/).
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